scholarly journals All-polymer whispering gallery mode sensor for application in optofluidics

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Ann Britt Petermann ◽  
Bernhard Roth ◽  
Uwe Morgner ◽  
Merve Meinhardt-Wollweber

AbstractMicrocavities such as spheres or rings are resonant optical sensors which support whispering gallery modes (WGMs). In recent years WGM based sensors have been continuously improved with respect to sensitivity and detection limit. The conventional method to measure physical as well as biological quantities using WGMs is to record the resonance shift of a single resonator. To ensure high sensitivity, resonators with high quality factors, expensive ultra narrow-line width tunable laser systems, and piezoelectric positioning are necessary. All these requirements hamper operation beyond the laboratory environment. To overcome these limitations in previous work we presented a small and completely polymer based measurement system. We use an array of microspheres with slightly different diameters, taking advantage of the fact that every single microsphere has a different resonance behaviour. Using many spheres instead of a single one relieves the high demands on resonator quality and allows using inexpensive polymer spheres instead of high quality resonators. Here we show, that a fixation of the spheres makes the device more robust with the result that the sensor is well suited for the determination of an unknown wavelength under different environmental conditions, for example in aqueous environment. This offers the possibility to use the sensor in microfluidics in the future.

Author(s):  
Matthew Frenkel ◽  
Marlon Avellan ◽  
Zhixiong Guo

Whispering-Gallery mode based optical micro-devices have been demonstrated to have extremely high sensitivity to changes in local temperature owing to their high quality factors and frequency-based measurements. In this paper, we first examine different fabrication techniques for integrating whispering-gallery mode sensors directly onto heating components to realize on-chip in-situ dynamic temperature measurements and monitoring. The merits and drawbacks of each fabrication technique are discussed. Then, the capability of the fabricated on-chip micro-sensors to perform precise real-time thermal measurements was tested, and the findings are discussed. Finally, the advantages of such on-chip sensors are established through heat transfer analysis.


2012 ◽  
Vol 82 ◽  
pp. 55-63 ◽  
Author(s):  
Silvia Soria ◽  
Simone Berneschi ◽  
Lorenzo Lunelli ◽  
Gualtiero Nunzi Conti ◽  
Laura Pasquardini ◽  
...  

In the field of sensing, WGM microresonators are receiving a growing interest as optical structures suitable for the realization of miniature sensors with high sensitivity. When properly excited, WGM microresonators are able to strongly confine light, by means of total internal reflection,along the equatorial plane near their spherical surface. The corresponding supported resonances show low losses and a high quality factor Q (107-109). These high values of the Q factor make possible the detection of any minute event that occurs on the surface of the spherical microcavity. In fact, any minimum change in the surface of the sphere or in the physical and optical properties of the surrounding environment reduces the Q factor value and modifies the position of the resonancesinside the dielectric microcavity. From a direct measurement of this resonance shift, one can infer the amount of analyte that produces this variation.


2017 ◽  
Vol 9 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Yu Pan ◽  
Guoping Lin ◽  
Souleymane Diallo ◽  
Xianmin Zhang ◽  
Yanne K. Chembo

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2698
Author(s):  
Nurperi Yavuz ◽  
Mustafa Mert Bayer ◽  
Hüseyin Ozan Ҫirkinoğlu ◽  
Ali Serpengüzel ◽  
Thien Le Phu ◽  
...  

An all-diamond photonic circuit was implemented by integrating a diamond microsphere with a femtosecond-laser-written bulk diamond waveguide. The near surface waveguide was fabricated by exploiting the Type II fabrication method to achieve stress-induced waveguiding. Transverse electrically and transverse magnetically polarized light from a tunable laser operating in the near-infrared region was injected into the diamond waveguide, which when coupled to the diamond microsphere showed whispering-gallery modes with a spacing of 0.33 nm and high-quality factors of 105. By carefully engineering these high-quality factor resonances, and further exploiting the properties of existing nitrogen-vacancy centers in diamond microspheres and diamond waveguides in such configurations, it should be possible to realize filtering, sensing and nonlinear optical applications in integrated diamond photonics.


2017 ◽  
Vol 1 (3) ◽  
pp. 477-481 ◽  
Author(s):  
Kaiyang Wang ◽  
Shang Sun ◽  
Chen Zhang ◽  
Wenzhao Sun ◽  
Zhiyuan Gu ◽  
...  

High-quality-factor whispering gallery mode lasers in CH3NH3PbBr3 perovskite microrod lasers.


Author(s):  
Seiji Isoda ◽  
Kimitsugu Saitoh ◽  
Sakumi Moriguchi ◽  
Takashi Kobayashi

On the observation of structures by high resolution electron microscopy, recording materials with high sensitivity and high quality is awaited, especially for the study of radiation sensitive specimens. Such recording material should be easily combined with the minimum dose system and cryoprotection method. Recently a new recording material, imaging plate, comes to be widely used in X-ray radiography and also in electron microscopy, because of its high sensitivity, high quality and the easiness in handling the images with a computer. The properties of the imaging plate in 100 to 400 kV electron microscopes were already discussed and the effectiveness was revealed.It is demanded to study the applicability of the imaging plate to high voltage electron microscopy. The quality of the imaging plate was investigated using an imaging plate system (JEOL EM-HSR100) equipped in a new Kyoto 1000kV electron microscope. In the system both the imaging plate and films can be introduced together into the camera chamber. Figure 1 shows the effect of accelerating voltage on read-out signal intensities from the imaging plate. The characteristic of commercially available imaging plates is unfortunately optimized for 100 to 200 keV electrons and then for 600 to 1000 keV electrons the signal is reduced. In the electron dose range of 10−13 to 10−10 C/cm2, the signal increases linearly with logarithm of electron dose in all acceralating volatges.


Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Ø. Svela ◽  
Jonathan M. Silver ◽  
Leonardo Del Bino ◽  
Shuangyou Zhang ◽  
Michael T. M. Woodley ◽  
...  

AbstractAs light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.


2021 ◽  
Author(s):  
Luis David Rosales-Vazquez ◽  
Alejandro Dorazco-González ◽  
Victor Sanchez-Mendieta

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be accomplished by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(II) and...


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document