scholarly journals Fast recognition method of moving video images based on BP neural networks

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 1024-1032 ◽  
Author(s):  
Yu Shao ◽  
Deden Witarsyah

Abstract At present, the accuracy of real-time moving video image recognition methods are poor. Also energy consumption is high and fault tolerance is not ideal. Consequently this paper proposes a method of moving video image recognition based on BP neural networks. The moving video image is divided into two parts: the key content and the background by binary gray image. By collecting training cubes. The D-SFA algorithm is used to extract moving video image features and to construct feature representation. The image features are extracted by collecting training cubes. The BP neural network is constructed to get the error function. The error signal is returned continuously along the original path. By modifying the weights of neurons in each layer, the weights propagate to the input layer step by step, and then propagates forward. The two processes are repeated to minimize the error signal. The result of image feature extraction is regarded as the input of BP neural network, and the result of moving video image recognition is output. And fault tolerance in real-time is better than the current method. Also the recognition energy consumption is low, and our method is more practical.

2021 ◽  
Author(s):  
Efstratios Kontellis ◽  
Christos Troussas ◽  
Akrivi Krouska ◽  
Cleo Sgouropoulou

The COVID-19 pandemic provoked many changes in our everyday life. For instance, wearing protective face masks has become a new norm and is an essential measure, having been imposed by countries worldwide. As such, during these times, people must wear masks to enter buildings. In view of this compelling need, the objective of this paper is to create a real-time face mask detector that uses image recognition technology to identify: (i) if it can detect a human face in a video stream and (ii) if the human face, which was detected, was wearing an object that it looked like a face mask and if it was properly worn. Our face mask detection model is using OpenCV Deep Neural Network (DNN), TensorFlow and MobileNetV2 architecture as an image classifier and after training, achieved 99.64% of accuracy.


2011 ◽  
Vol 58-60 ◽  
pp. 23-27
Author(s):  
Jin Shan Zhang ◽  
Xiang Tian Xie

In the study of vegetable price forecast, as the price is subject to various uncertain factors (weather, supply and demand, etc.), it has attributes such as high nonlinear, randomness and high noise, which would lead to the difficulty in forecasting. But grasping the law of price development and understanding the development trend of price, would help farmers grow the vegetable reasonably, and reduce unbalanced supply and demand. Therefore, we will make use of the characteristics of neural networks such as self-adapt,self-study and high fault tolerance, to build up the model of BP neural network with the training function of L-M for forecasting the vegetable prices. Finally, numerical example proves that the method is effective.


Author(s):  
Wanting Zhao ◽  
Hong Qi ◽  
Yu Jiang ◽  
Chong Wang ◽  
Fenglin Wei

In the field of underwater image recognition, a chip with smaller footprint and lower energy consumption is required to be implanted into autonomous intelligent underwater vehicle to make real-time response to the surrounding objects. Therefore, a promising accelerator with high performance and low energy consumption is designed, which optimizes the features possessed by convolutional neural network. The sharing of weights between neurons reduces the memory requirement. With all convolutional neural network data stored within on-chip static random-access memory, the need for memory access is drastically decreased. Besides, several small processing elements are used to form neural functional unit, which considerably reduces the bandwidth requirement through inter-processing element data transmission. By sending control signals to autonomous underwater vehicle, this accelerator enables it to avoid dangerous areas such as rocks and algae in time. The result suggests the proposed accelerator successfully achieves a higher processing speed than that of CPU and GPU with a footprint of 6.09 mm2 only and the energy consumption of 327.3 mW at 1 GHz.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shu-zhi Gao ◽  
Jie-sheng Wang ◽  
Na Zhao

Polyvinyl chloride (PVC) polymerizing production process is a typical complex controlled object, with complexity features, such as nonlinear, multivariable, strong coupling, and large time-delay. Aiming at the real-time fault diagnosis and optimized monitoring requirements of the large-scale key polymerization equipment of PVC production process, a real-time fault diagnosis strategy is proposed based on rough sets theory with the improved discernibility matrix and BP neural networks. The improved discernibility matrix is adopted to reduct the attributes of rough sets in order to decrease the input dimensionality of fault characteristics effectively. Levenberg-Marquardt BP neural network is trained to diagnose the polymerize faults according to the reducted decision table, which realizes the nonlinear mapping from fault symptom set to polymerize fault set. Simulation experiments are carried out combining with the industry history datum to show the effectiveness of the proposed rough set neural networks fault diagnosis method. The proposed strategy greatly increased the accuracy rate and efficiency of the polymerization fault diagnosis system.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


2021 ◽  
pp. 1-10
Author(s):  
Lipeng Si ◽  
Baolong Liu ◽  
Yanfang Fu

The important strategic position of military UAVs and the wide application of civil UAVs in many fields, they all mark the arrival of the era of unmanned aerial vehicles. At present, in the field of image research, recognition and real-time tracking of specific objects in images has been a technology that many scholars continue to study in depth and need to be further tackled. Image recognition and real-time tracking technology has been widely used in UAV aerial photography. Through the analysis of convolution neural network algorithm and the comparison of image recognition technology, the convolution neural network algorithm is improved to improve the image recognition effect. In this paper, a target detection technique based on improved Faster R-CNN is proposed. The algorithm model is implemented and the classification accuracy is improved through Faster R-CNN network optimization. Aiming at the problem of small target error detection and scale difference in aerial data sets, this paper designs the network structure of RPN and the optimization scheme of related algorithms. The structure of Faster R-CNN is adjusted by improving the embedding of CNN and OHEM algorithm, the accuracy of small target and multitarget detection is improved as a whole. The experimental results show that: compared with LENET-5, the recognition accuracy of the proposed algorithm is significantly improved. And with the increase of the number of samples, the accuracy of this algorithm is 98.9%.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 737
Author(s):  
Chaitanya Sampat ◽  
Rohit Ramachandran

The digitization of manufacturing processes has led to an increase in the availability of process data, which has enabled the use of data-driven models to predict the outcomes of these manufacturing processes. Data-driven models are instantaneous in simulate and can provide real-time predictions but lack any governing physics within their framework. When process data deviates from original conditions, the predictions from these models may not agree with physical boundaries. In such cases, the use of first-principle-based models to predict process outcomes have proven to be effective but computationally inefficient and cannot be solved in real time. Thus, there remains a need to develop efficient data-driven models with a physical understanding about the process. In this work, we have demonstrate the addition of physics-based boundary conditions constraints to a neural network to improve its predictability for granule density and granule size distribution (GSD) for a high shear granulation process. The physics-constrained neural network (PCNN) was better at predicting granule growth regimes when compared to other neural networks with no physical constraints. When input data that violated physics-based boundaries was provided, the PCNN identified these points more accurately compared to other non-physics constrained neural networks, with an error of <1%. A sensitivity analysis of the PCNN to the input variables was also performed to understand individual effects on the final outputs.


2013 ◽  
Vol 694-697 ◽  
pp. 1958-1963 ◽  
Author(s):  
Xian Wei ◽  
Jing Dong Zhang ◽  
Xue Mei Qi

The robots identify, locate and install the workpiece in FMS system by identifying the characteristic information of target workpiece. The paper studied the recognition technology of complex shape workpiece with combination of BP neural network and Zernike moment. The strong recognition ability of Zernike moment can extract the characteristic. The good fault tolerance, classification, parallel processing and self-learning ability of BP neural network can greatly improve the accurate rate of recognition. Experimental results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document