scholarly journals Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 230-240
Author(s):  
Mario Versaci ◽  
Giovanni Angiulli ◽  
Paolo di Barba ◽  
Francesco Carlo Morabito

AbstractSteel plates bi-axially loaded are characterized by mechanical deformations whose 2D image representations are very difficult to achieve. In this work, the authors propose an innovative approach based on eddy current techniques for obtaining 2D electrical maps to assess the mechanical integrity of a steel plate. The procedure, also exploiting fuzzy similarity computations, translates the problem of the assessment of the mechanical integrity of a steel plate into a suitable classification problem. The results obtained by this proposed procedure show performances comparable to those provided by well-established soft computing approaches with a higher computational complexity.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5515
Author(s):  
Linnan Huang ◽  
Chunhui Liao ◽  
Xiaochun Song ◽  
Tao Chen ◽  
Xu Zhang ◽  
...  

The uneven surface of the weld seam makes eddy current testing more susceptible to the lift-off effect of the probe. Therefore, the defect of carbon steel plate welds has always been a difficult problem in eddy current testing. This study aimed to design a new type of eddy current orthogonal axial probe and establish the finite element simulation model of the probe. The effect of the probe structure, coil turns, and coil size on the detection sensitivity was simulated. Further, a designed orthogonal axial probe was used to conduct a systematic experiment on the weld of carbon steel specimens, and the 0.2 mm width and 1 mm depth of weld defects of carbon steel plates were effectively detected. The experimental results showed that the new orthogonal axial eddy current probe effectively suppressed the unevenness effect of the weld surface on the lift-off effect during the detection process.


2021 ◽  
Vol 9 (6) ◽  
pp. 604
Author(s):  
Du-Song Kim ◽  
Hee-Keun Lee ◽  
Woo-Jae Seong ◽  
Kwang-Hyeon Lee ◽  
Hee-Seon Bang

The International Maritime Organization has recently updated the ship emission standards to reduce atmospheric contamination. One technique for reducing emissions involves using liquefied natural gas (LNG). The tanks used for the transport and storage of LNG must have very low thermal expansion and high cryogenic toughness. For excellent cryogenic properties, high-Mn steel with a complete austenitic structure is used to design these tanks. We aim to determine the optimum welding conditions for performing Laser-MIG (Metal Inert Gas) hybrid welding through the MIG leading and laser following processes. A welding speed of 100 cm/min was used for welding a 15 mm thick high-Mn steel plate. The welding performance was evaluated through mechanical property tests (tensile and yield strength, low-temperature impact, hardness) of the welded joints after performing the experiment. As a result, it was confirmed that the tensile strength was slightly less than 818.4 MPa, and the yield strength was 30% higher than base material. The low-temperature impact values were equal to or greater than 58 J at all locations in the weld zone. The hardness test confirmed that the hardness did not exceed 292 HV. The results of this study indicate that it is possible to use laser-MIG hybrid welding on thick high-Mn steel plates.


1992 ◽  
Author(s):  
Rodrigo de Oliveira Bohbot ◽  
Dominique Lesselier ◽  
Bernard Duchene ◽  
Nathalie Coutanceau

2014 ◽  
Vol 496-500 ◽  
pp. 392-395 ◽  
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Jun Ping Chen

The influence of Ti/N ratio on the effective boron and mechanical properties was investigated by analyzing data from low carbon boron alloyed bainitic steel plates. The result shows Ti/N ratio varies with effective boron value. Less than 50% effective boron was obtained when Ti/N ratio is below 3.3, nearly 90% effective boron is obtained when ratio Ti/N is more than 4; Adding enough Titanium is an effective and economic way to improve qualified ratio of bainitic steel plate. The Ti content between 0.010% and 0.030% does not have obvious effect on the toughness of the bainitic steel;


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Long Liu ◽  
Lifeng Wang ◽  
Ziwang Xiao

PurposeThe flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method to improve its bearing capacity. The purpose of this paper is to explore the influence of anchoring steel plates of different thicknesses on the bearing capacity of hollow slab beam and to judge its working status.Design/methodology/approachFirst, static load experiments are carried out on two in-service RC hollow slab beams; meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Finally, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.FindingsWhen steel plates of different thicknesses are adopted to reinforce RC hollow slab beams, the bearing capacity increases with the increase of the steel plate thickness in a certain range. But when the steel plate thickness reaches a certain level, bearing capacity is no longer influenced. The displacement ductility coefficient decreases with the increase of steel plate thickness.Originality/valueBased on experimental study, this paper makes an extrapolation analysis of the bearing capacity of hollow slab beams reinforced with steel plates of different thicknesses through finite element simulation and discusses the influence on ductility. This method not only ensures the accuracy of bearing capacity evaluation but also does not need many samples, which is economical to a certain extent. The research results provide a basis for the reinforcement design of similar bridges.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


Author(s):  
G. L. Fitzpatrick ◽  
D. K. Thome ◽  
R. L. Skaugset ◽  
E. Y. C. Shih ◽  
William C. L. Shih

2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940005
Author(s):  
Jie Cui ◽  
Xin Chen ◽  
Ali Tian ◽  
Renchuan Ye ◽  
Yanxi Qiao ◽  
...  

To analyze the influence of penetration resistance for different steel plate configurations, different steel plates impacted by various projectiles were studied using the LS-DYNA code. The calculation results obtained using the LS-DYNA code and prior experimental results reported in the literature agree well with the damaged image of projectiles penetrating steel plates and the initial residual velocity curve of the projectile. The Q235 steel constitutive model is modified based on the Johnson–Cook model. It can be concluded that the LS-DYNA code analysis is reliable when compared with the experimental results. We then used the LS-DYNA code to conduct an extensive study into the penetration resistance of monolithic, contact-type double-layered and gap-type double-layered targets with the same surface density, impacted by different projectiles. The failure mode of the steel plate, initial residual velocity, ballistic limit velocity, energy absorption and plastic deformation of the monolithic and double-layered plates were studied. The results in this paper can provide guidance for the design and application of structural protection using steel plates.


Sign in / Sign up

Export Citation Format

Share Document