Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sencer Sureyya Karabeyoglu ◽  
Olcay Eksi ◽  
Pasa Yaman ◽  
Bedri Onur Kucukyildirim

Abstract Acrylonitrile-butadiene-styrene test specimens were additively manufactured by fused deposition method to investigate the effects of infill pattern and density on wear rate, coefficient of friction, wear mechanisms, and microscopic wear characterization. The surface morphology of specimens was characterized using a scanning electron microscope. Under constant parameters of applied load, sliding speed, and sliding time, wear tests were carried out at room temperature. The study revealed that a grid pattern of high infill density and a honeycomb pattern of low infill density showed the lowest wear rate and lowest coefficient of friction compared to the rectilinear pattern. Infill pattern and density affected the wear rate behavior of specimens directly. Moreover, adhesion between additively manufactured layers along with surface texture affects the wear behavior and wear rate. Increasing infill density allowed poor cooling of previously built layers. Longer process time results in rough surfaces.

Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Mohd Fadzli Bin Abdollah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Hilmi Amiruddin ◽  
Faiz Redza Ramli ◽  
...  

This study intends to analyse the coefficient of friction and wear properties of the acrylonitrile butadiene styrene polymer by determining the optimal parameters for 3D printing. The pin specimens were produced using the fused filament fabrication 3D printing. Response surface methodology is used for the multivariate analysis, and Box–Behnken Design is the chosen symmetrical design method. Changes to the dependent variables, coefficient of friction and wear rate, were analysed as a function of the nozzle temperature, layer height and printing pattern. The coefficient of friction and wear rate were measured using a pin-on-disc tribometer. A good agreement between the modelled and measured values of coefficient of friction and wear rate was observed. The study suggests that layer height affecting coefficient of friction and wear rate most significantly. It is determined that a layer height of 0.10 mm and a nozzle temperature of 234℃ using the triangle printing pattern is the optimal set of combination to minimise coefficient of friction and wear rate.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


2019 ◽  
Vol 821 ◽  
pp. 137-143 ◽  
Author(s):  
Pavan Kumar Gurrala ◽  
Brijesh Tripathi

In the current technological evolution, additive manufacturing is taking a lead role in manufacturing of components for both prototyping as well as finished products. Metallization of the polymer parts has high potential to add value in-terms of metallic luster, improved strength, long shelf-life and better radiation resistance. Standard acid copper plating process has been adopted for deposition of copper on polymer parts manufactured by fused deposition modelling (FDM) technique. The parameters namely the etching time, voltage and the surface finish of the manufactured FDM parts are studied for their influence on the surface quality. Experiments have been designed using design of experiments strategy. Experiments have been conducted and surface roughness has been measured. Influence of each of the three parameters has been discussed in detail. For the reported process the optimal value of etching time of Acrylonitrile Butadiene Styrene (ABS) has been found in the range of 30 to 60 minutes along with applied voltage in the range of 1.5 to 2.5 Volts for copper electroplating.


Sign in / Sign up

Export Citation Format

Share Document