3D printing parameters of acrylonitrile butadiene styrene polymer for friction and wear analysis using response surface methodology

Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Mohd Fadzli Bin Abdollah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Hilmi Amiruddin ◽  
Faiz Redza Ramli ◽  
...  

This study intends to analyse the coefficient of friction and wear properties of the acrylonitrile butadiene styrene polymer by determining the optimal parameters for 3D printing. The pin specimens were produced using the fused filament fabrication 3D printing. Response surface methodology is used for the multivariate analysis, and Box–Behnken Design is the chosen symmetrical design method. Changes to the dependent variables, coefficient of friction and wear rate, were analysed as a function of the nozzle temperature, layer height and printing pattern. The coefficient of friction and wear rate were measured using a pin-on-disc tribometer. A good agreement between the modelled and measured values of coefficient of friction and wear rate was observed. The study suggests that layer height affecting coefficient of friction and wear rate most significantly. It is determined that a layer height of 0.10 mm and a nozzle temperature of 234℃ using the triangle printing pattern is the optimal set of combination to minimise coefficient of friction and wear rate.

2020 ◽  
Vol 170 ◽  
pp. 01025
Author(s):  
Tushar Gadekar ◽  
Dinesh Kamble

Friction and wear in dynamic parts is the primary reason for energy loss in gearbox lubrication system and this can be optimized by utilizing modified lubricant. The tribological nature of gearbox system is critically affected by factors such as type of lubricant, loading & speed etc. In latest years, multiple advanced oil and modern tribological techniques & instruments have been utilized to investigate behaviour of oil like pin on disc, Fourball tester etc. This paper presents comparative investigation of oil blended with additive for two different conditions using prediction model & RSM. The design of experimentations has been conducted by using response surface methodology. The value of inputs parameters such as concentration, load & sliding velocity ranges from 0.5 to 5 %, 60 to 100 N and 0.65 to 1.5 m/s, respectively are utilized to evaluate the outcomes of coefficient of friction and specific wear rate. At the end results from Prediction equations are compared with experimental literature based outcomes to signify the effect of parameters like blend %, load & Sliding speed. The Coefficient of friction model showed 47.57 % more closer outcomes as compared to the Specific wear rate model for specific variation of unknown parameters for pin on disc setup in oil.


2015 ◽  
Vol 642 ◽  
pp. 19-23
Author(s):  
Shang Guan Bao ◽  
Yi Fan Wang ◽  
Zhen Hai Yang ◽  
Yong Zhen Zhang ◽  
Yue Chen ◽  
...  

Using C/C composite and chrome bronze as a friction couple, the frictional wear properties of C/C composite with electric current is studied in this paper. The results have shown that current, velocity and load are important factors to affect the frictional wear properties of C/C composite with electric current. Wear rate of C/C composite increases with the increase of arc energy .The coefficient of friction and the wear rate increase with the increase of velocity when the electric current is constant of 100A. The coefficient of friction increases but the wear rate decreases with the increase of load when the electric current is constant at 100A. The coefficient of friction decreases but the wear rate increases with the increase of current when the load is constant of 80N. Comparing with no electric current, the coefficient of friction of C/C composite with electric current decreases but the wear rate of that increases obviously. The wear mechanism of C/C composite is mainly of electric wear caused by arc erosion under the condition of current-carrying.


2021 ◽  
pp. 0021955X2110094
Author(s):  
Rupesh Dugad ◽  
G Radhakrishna ◽  
Abhishek Gandhi

The lightweight products with superior specific strength are in great demand in numerous applications such as automotive, aerospace, biomedical, sports, etc. This work focussed on the manufacturing of lightweight products using the cellular three dimensional (3D) printing process. In this work, the continuous microcellular morphology has been developed in a single foamed filament using 3 D printing of carbon-di-oxide (CO2) saturated acrylonitrile butadiene styrene (ABS) filaments. The microcellular structures with average cell size in the range of 6–1040 µm were developed. The influence of printing parameters; nozzle temperature, feed rate, and flow rate on the foam characteristics and cell morphology at different levels were investigated. The different kinds of observed foamed extrudate irregularities were discussed.


2012 ◽  
Vol 585 ◽  
pp. 569-573 ◽  
Author(s):  
S.R. Chauhan ◽  
Sunil Thakur

In this paper the friction and wear characteristics of vinylester and vinylester composites have been investigated under dry sliding conditions for different applied normal load, sliding speed and sliding distance. The experiments have been carried on a pin on disc arrangement at normal room temperature conditions. The influence of friction and wear parameters like normal load, speed, sliding distance and percentage of filler content on the friction and wear rate has been investigated. In this study, a plan of experiments based on the techniques of Taguchi was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) were applied to investigate the influence of process parameters on the coefficient of friction and sliding wear behaviour of these composites. The Taguchi design of experiment approach eliminates the need for repeated experiments and thus saves time, material and cost. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and specific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly.


2015 ◽  
Vol 642 ◽  
pp. 179-183
Author(s):  
K.A.H. Al Mahmud ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
H.M. Mobarak

Currently diamond like carbon (DLC) coatings application for automotive components is becoming a favorable strategy to cope with new challenges faced by automotive industries. DLC coating is very effective to lower the coefficient of friction and wear rate, which in turn could improve fuel efficiency and durability of the engine components. Commercially available fully formulated lubricating oils are specially produced to enhance the lubrication of ferrous materials. Therefore, nonferrous coating (DLC) interaction with commercial lubricating oil needs to be investigated. In this current investigation, coefficient of friction and wear rate were investigated by ball on plate tribo testing machine at different temperatures in the presence of SAE 40 lubricating oil. At high test temperature coefficient of friction decreases, however wear rate increases for the a-C:H coated plate, however, steel/steel contact shows opposite trend of coefficient of friction and wear rate change.


2005 ◽  
Vol 128 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Daniel Mazzucco ◽  
Myron Spector

The effects of contact area and contact stress on friction and wear of polyethylene-metal articulation were evaluated using a bidirectional pin-on-disk apparatus. A doubling of the contact area under fixed loading conditions led to a 50% increase in the coefficient of friction and a doubling of the wear rate. There appeared to be a relationship between the increase in wear rate and the increase in the coefficient of friction. A model was developed to explain the mechanism by which engagement of asperities results in the increasing wear rate with increasing contact area despite the decreased stress.


2018 ◽  
Vol 70 (3) ◽  
pp. 506-511 ◽  
Author(s):  
S. Shankar ◽  
M. Manikandan ◽  
G. Raja

Purpose The decrease in availability of mineral oils and their environmental hazards created the need to search for alternate bio-based oils. The aim of this study is to investigate the friction and wear characteristics of kapok (Ceiba pentandra) oil as a bio-lubricant. Design/methodology/approach The wear and friction characteristics between steel-steel contact under lubrication were found using a pin-on-disk tribometer under different loads and sliding speeds, respectively. The corrosion and oxidation stability of the test lubricants were also analyzed. The worn surfaces of the specimen are analyzed with the help of an optical microscope. The obtained results were compared with palm oil and mineral oil (SAE20W 40). Findings From the investigation, it is found that the kapok oil possess a lower coefficient of friction and wear rate than palm and mineral oil. It is also found that the coefficient of friction varies proportionally and the wear rate varies inversely with the sliding speed as expected. Originality/value The present results confirm that the kapok oil can be used as an alternative lubricant to reduce the demand for mineral-based oil lubricants.


Author(s):  
Dan Mazzucco ◽  
Myron Spector

The effects of contact area and contact stress on friction and wear of polyethylene-metal articulation were evaluated using a bi-directional pin-on-disk apparatus. A doubling of the contact area under fixed loading conditions led to a 50% increase in the coefficient of friction and a doubling of the wear rate. There appeared to be a relationship between the increase in wear rate and the increase in the coefficient of friction. A model was developed to explain the mechanism by which engagement of asperities results in the increasing wear rate with increasing contact area despite the decreased stress.


Author(s):  
D. G. Powell ◽  
S. W. E. Earles

An experimental study of the dependence of the coefficient of friction and rate of wear of unlubricated steel surfaces in a pin–disc configuration has suggested the use of certain parameters involving normal force, N, and sliding speed, U, in correlating the effects of surface temperature and surface condition with both friction and wear. The interpretation of these functions in terms of the parameters of the ring–traveller problem suggests that the coefficient of friction can be expressed as a function of U2 √(traveller mass/ring radius) and the traveller wear rate is directly proportional to √ (traveller mass/ring radius) providing that sliding conditions are chosen to produce a constant value of surface temperature. This last conclusion is restricted by the previous observation that beyond a certain critical temperature periodic removal of the self-generated surface films occurs. This causes a large increase in the values of both coefficient of friction and wear rate and it is suggested therefore that the ‘temperature instability’ of the surface oxide films may possibly be the prime cause of excessive yarn breakages, and overheated travellers after long periods of operation. An end-breakage criterion is proposed. Previously published results of the friction and wear measured in ring–traveller mechanisms are re-interpreted in the light of the parameters suggested by the present work.


Sign in / Sign up

Export Citation Format

Share Document