scholarly journals Research on Intelligent Diagnosis Method for Large-Scale Ship Engine Fault in Non-Deterministic Environment

2017 ◽  
Vol 24 (s3) ◽  
pp. 200-206 ◽  
Author(s):  
Donghua Feng ◽  
Yahong Li

Abstract Aiming at the problem of inaccurate and time-consuming of the fault diagnosis method for large-scale ship engine, an intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment based on neural network is proposed. First, the possible fault of the engine was analyzed, and the downtime fault of large-scale ship engine and the main fault mode were identified. On this basis, the fault diagnosis model for large-scale ship engine based on neural network is established, and the intelligent diagnosis of engine fault is completed. The experiment proved that the proposed method has high diagnostic accuracy, engine fault diagnosis takes only about 3s, with a higher use value.

2014 ◽  
Vol 1014 ◽  
pp. 501-504 ◽  
Author(s):  
Shu Guo ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Kun Li ◽  
...  

In order to discover the fault with roller bearing in time, a new fault diagnosis method based on Empirical mode decomposition (EMD) and BP neural network is put forward in the paper. First, we get the fault signal through experiments. Then we use EMD to decompose the vibration signal into a series of single signals. We can extract main fault information from the single signals. The kurtosis coefficient of the single signals forms a feature vector which is used as the input data of the BP neural network. The trained BP neural network can be used for fault identification. Through analyzing, BP neural network can distinguish the fault into normal state, inner race fault, outer race fault. The results show that this method can gain very stable classification performance and good computational efficiency.


2013 ◽  
Vol 765-767 ◽  
pp. 2078-2081
Author(s):  
Ya Feng Meng ◽  
Sai Zhu ◽  
Rong Li Han

Neural network and Fault dictionary are two kinds of very useful fault diagnosis method. But for large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. When the fault samples are few, it is difficulty to train the neural network, and the trained neural network can not diagnose the entire faults. In this paper, a new fault diagnosis method based on combination of neural network and fault dictionary is introduced. The fault dictionary with large scale is divided into several son fault dictionary with smaller scale, and the search index of the son dictionary is organized with the neural networks trained with the son fault dictionary. The complexity of training neural network is reduced, and this method using the neural networks ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many neural networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved. At last, the validity of the method is proved by the experimental results.


2012 ◽  
Vol 468-471 ◽  
pp. 1066-1069
Author(s):  
Qiang Huang ◽  
Xiao Zhuo Ouyang ◽  
Cheng Wang

In this paper, an engine diagnosis method with high precision and quickly response is proposed. Firstly, the Akaike Information Criterion (AIC) is used to improve the performance of the neural network to build the fault diagnosis model. Then the vibration signals are analyzed to estimate the states of the diesel engine. Finally, the five states of diesel engine are set to validate the veracity of diagnosis method. According to experiment and simulation researches, it indicates that the diagnosis method with RBF neural network based on AIC is effective. The veracity of identification is 100% to the single fault. It is a valuable reference to the vibration diagnosis for other complex rotary machines.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yulong Luo

Gas turbine is widely used because of its advantages of fast start and stop, no pollution, and high thermal efficiency. However, the working environment of high temperature, high pressure, and high speed makes the gas turbine prone to failure. The traditional gas path fault intelligent diagnosis scheme of the gas turbine has the problems of poor control effect and low scheduling accuracy. Experiment studies the application of neural network and reinforcement learning algorithm in gas path fault intelligent diagnosis of the gas turbine. The accurate control of fault diagnosis planning is realized from gas path fault diagnosis, daily maintenance, service condition monitoring, power utilization rate, and other aspects of the gas turbine. The reinforcement learning model can realize the intelligent diagnosis and record of gas path fault of the gas turbine, to achieve diversified analysis and intelligent diagnosis scheme. Through neural network algorithm and deep learning technology, the whole process monitoring of the gas turbine is realized, and the failure rate of the gas turbine in the working process is reduced. The experimental results show that, compared with the thermal fault diagnosis method and the fault diagnosis method of the electric percussion drill, using thermal imaging, the gas turbine gas path fault intelligent diagnosis model based on the reinforcement learning algorithm can complete the data information in the process of real-time data transmission. The quantified conversion and processing of the system has the advantages of higher control accuracy and faster response speed, which can effectively improve the diagnostic efficiency and accuracy.


2021 ◽  
Vol 11 (24) ◽  
pp. 12117
Author(s):  
Zhinong Li ◽  
Zedong Li ◽  
Yunlong Li ◽  
Junyong Tao ◽  
Qinghua Mao ◽  
...  

In engineering, the fault data unevenly distribute and difficultly share, which causes that the existing fault diagnosis methods cannot recognize the newly added fault types. An intelligent diagnosis method for machine fault is proposed based on federated learning. Firstly, the local fault diagnosis models diagnosing the existing fault data and the newly added fault data are established by deep convolutional neural network. Then, the weight parameters of local models are fused into global model parameters by federated learning. Finally, the global model parameters are transmitted to each local model. Therefore, each local model update into a global shared model which can recognize the newly added fault types. The proposed method is verified by bearing data. Compared with the traditional model, which can only diagnose the existing fault data but cannot recognize newly added fault types, the federated fault diagnosis model fusing weight parameters can diagnose newly added faults without exchanging the data, and the accuracy is 100%. The proposed method provides an effective method to solve the poor sharing of fault data and poor generalization of fault diagnosis model for mechanical equipment.


2014 ◽  
Vol 1044-1045 ◽  
pp. 798-800 ◽  
Author(s):  
Hong Zhu

With the development of science and technology, the theoretical content of mechanical fault diagnosis technology has been initially improved and established a scientific research system. Combining the mechanical diagnostic techniques with the current advanced science and technology, a variety of mechanical fault diagnosis methods have been researched and developed. Mechanical fault diagnosis evolved from empirical diagnosis to mechanical diagnosis and then to the current intelligent learning diagnosis. Now mechanical fault diagnosis collects mechanical failure data precisely mainly by a variety of sensors, uses a variety of fault diagnosis model to conduct diversified and intelligent diagnosis.


Author(s):  
Ling Chen ◽  
Wei Han ◽  
Hai-Tao Li ◽  
Zi-Kun Xu ◽  
Jing-Wei Zhang ◽  
...  

Various faults of photovoltaic (PV) modules inevitably occur in the work process, since PV modules are installed in hostile situation. To obtain the types of failure, a novel fault diagnosis method based on back propagation (BP) neural network with Levenberg-Marquardt (L-M) algorithm for PV modules is proposed. Through the in-depth analysis the output of PV modules under normal and fault conditions, the input variables of the diagnosis model are acquired. The high-speed and real-time fault diagnosis model for PV modules is first designed based on TMS320VC5402 DSP and long-distance wireless fault diagnosis is realized by Zigbee technology. The simulation and experimental results show that the fault diagnosis method for PV modules based on BP network with L-M algorithm can effectively detect four types of fault for PV modules such as open circuit, short circuit, partial shading and abnormal degradation. The numerical results verify the effectiveness and correctness of the proposed method, which can provide a great educational benefit of PV operation technology.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Sign in / Sign up

Export Citation Format

Share Document