Carbonyl pigments: General principles

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter describes the general features of the chemical class of pigments designated as carbonyl pigments. These pigments are characterized by the presence of carbonyl groups linked to one another via an extended conjugated system, often forming polycyclic aromatic structures. Carbonyl pigments have experienced distinct phases in their histories. Certain carbonyl colorants, notably anthraquinonoids, were discovered in the early twentieth century and subsequently used as vat dyes for textiles, but their potential as high-performance pigments was not realized until the mid-twentieth century when demand began to emerge for pigments of the quality that they could provide. After conversion to a suitable physical form, several vat dyes were then introduced as vat pigments. Several other carbonyl pigment types did not originate as vat dyes but were developed specifically for pigment use. Carbonyl pigments provide a wider diversity of structural arrangements. The broad carbonyl chemical class may be categorized into several sub-types, each with its own characteristic structural features. These categories, which are discussed in separate chapters, include anthraquinonoids, quinacridones, diketopyrrolopyrroles, perylenes, perinones, indigoids, isoindolines, isoindolinones, and quinophthalones. These products generally owe their high levels of technical performance to their large molecular size and high molecular planarity, which lead to highly compact crystal structures and, in many cases, to the ability of the carbonyl group to participate in strong intra- and intermolecular hydrogen bonding.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


Author(s):  
Ling Wu ◽  
Qiurong He ◽  
Jing Zhang ◽  
Yongxin Li ◽  
Weiqing Yang ◽  
...  

Abstract Background Polycyclic aromatic hydrocarbons (PAHs) have attracted worldwide attention due to their carcinogenic, teratogenic and mutagenic effects, environmental persistence and bioaccumulation characteristics. Therefore, the sensitive, reliable and rapid detection of PAHs in sediment is of great importance. Objective To develop a high-performance liquid chromatography (HPLC) with fluorescence and ultraviolet detection after QuEChERS treatment for simultaneous determination of 16 U.S. Environmental Protection Agency priority PAHs in sediment samples. Methods The samples were ultrasonically extracted with acetone and then the supernatant was purified with a modified QuEChERS method. After centrifugation, the supernatant was injected into the HPLC system for analysis. The separation was accomplished on a ZORBAX Eclipse PAH column (150 × 4.6 mm, 3.5 μm) and the column temperature was set at 30 °C. The flow rate of the mobile phase consisting of water and acetonitrile in gradient elution mode was fixed at 0.9 mL/min. Detection was conducted on an ultraviolet detector and a fluorescence detector simultaneously. The qualitative analysis was based on retention time and the quantification was based on standard curves. Results Under the optimal conditions, this method showed good linearities in the range of 10–200 μg/L with correlation coefficients greater than 0.9993. The method had the limits of detection (LODs) ranging from 0.00108 to 0.314 ng/g. The mean recoveries ranged from 78.4 to 117% with the intra-day and inter-day relative standard deviations (RSDs) of 0.592–10.7 and 1.01–13.0%, respectively. The proposed method was successfully applied to the detection of 16 PAHs in sediment samples collected from the Funan River in Chengdu, China with the total contents of 431 to 2143 ng/g·dw. Conclusions The established method is simple, rapid, environment-friendly and cost- effective. It can be applied to the analysis of 16 PAHs in sediment samples. Highlights A method of QuEChERS with ultrasound-assisted extraction combined with HPLC has been established for the analysis of 16 PAHs in sediment samples and the proposed method has been successfully applied to the analysis PAHs in real sediment samples.


Author(s):  
Marta Oliveira ◽  
Sílvia Capelas ◽  
Cristina Delerue-Matos ◽  
Simone Morais

Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Céline Liaud ◽  
Sarah Chouvenc ◽  
Stéphane Le Calvé

The emergence of new super-insulated buildings to reduce energy consumption can lead to a degradation of the indoor air quality. While some studies were carried out to assess the air quality in these super-insulated buildings, they were usually focused on the measurement of gas phase pollutants such as carbon dioxide and volatile organic compounds. This work reports the first measurements of Polycyclic Aromatic Hydrocarbons (PAHs) associated with particles as a function of time and particle size in a low-energy building. The airborne particles were collected indoors and outdoors over three to four days of sampling using two three-stage cascade impactors allowing to sample simultaneously particles with aerodynamic diameter Dae > 10 µm, 2.5 µm < Dae < 10 µm, 1 µm < Dae < 2.5 µm, and Dae < 1 µm. The 16 US-EPA priority PAHs were then extracted and quantified by high-performance liquid chromatography (HPLC) coupled to fluorescence detection. The resulting total particle concentrations were low, in the ranges 3.73 to 9.66 and 0.60 to 8.83 µg m-3 for indoors and outdoors, respectively. Thirteen PAHs were always detected in all the samples. The total PAH concentrations varied between 290 and 415 pg m−3 depending on the particle size, the environment (indoors or outdoors) and the sampling period considered. More interestingly, the temporal variations of individual PAHs highlighted that high molecular weight PAHs were mainly associated to the finest particles and some of them exhibited similar temporal behaviors, suggesting a common emission source. The indoor-to-outdoor concentration ratios of individual PAH were usually found close to or less than 1, except during the event combining rainy conditions and limited indoor ventilation rate.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Bazoin Sylvain Raoul Bazié ◽  
Caroline Douny ◽  
Thomas Judicaël Ouilly ◽  
Djidjoho Joseph Hounhouigan ◽  
Aly Savadogo ◽  
...  

Charcoal- or wood-cooked chicken is a street-vended food in Burkina Faso. In this study, 15 samples of flamed chicken and 13 samples of braised chicken were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) with a high-performance liquid chromatography-fluorescence detector. A face-to-face survey was conducted to assess the consumption profiles of 300 men and 300 women. The health risk was assessed based on the margin of exposure (MOE) principle. BaP (14.95–1.75 μg/kg) and 4PAHs (BaP + Chr + BaA + BbF) (78.46–15.14 μg/kg) were eight and five times more abundant at the median level in flamed chickens than in braised ones, respectively. The contents of BaP and 4PAHs in all flamed chicken samples were above the limits set by the European Commission against 23% for both in braised chickens. Women had the highest maximum daily consumption of both braised (39.65 g/day) and flamed chickens (105.06 g/day). At the estimated maximum level of consumption, women were respectively 3.64 (flamed chicken) and 1.62 (braised chicken) times more exposed to BaP and 4PAHs than men. MOE values ranged between 8140 and 9591 for men and between 2232 and 2629 for women at the maximum level of consumption of flamed chickens, indicating a slight potential carcinogenic risk.


Sign in / Sign up

Export Citation Format

Share Document