Naturally occurring heterocyclic anticancer compounds

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shashi Kiran Misra ◽  
Kamla Pathak

Abstract Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.

2021 ◽  
Vol 12 ◽  
Author(s):  
Vivek P. Chavda ◽  
Yavuz Nuri Ertas ◽  
Vinayak Walhekar ◽  
Dharti Modh ◽  
Avani Doshi ◽  
...  

Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.


2020 ◽  
Vol 27 (35) ◽  
pp. 5970-6014 ◽  
Author(s):  
Md. Jawaid Akhtar ◽  
Mohammad Shahar Yar ◽  
Vinod Kumar Sharma ◽  
Ahsan Ahmed Khan ◽  
Zulphikar Ali ◽  
...  

This review presents the detailed account of factors leading to cancer and design strategy for the synthesis of benzimidazole derivatives as anticancer agents. The recent survey for cancer treatment in Cancer facts and figures 2017 American Chemical Society has shown progressive development in fighting cancer. Researchers all over the world in both developed and developing countries are in a continuous effort to tackle this serious concern. Benzimidazole and its derivatives showed a broad range of biological activities due to their resemblance with naturally occurring nitrogenous base i.e. purine. The review discussed benzimidazole derivatives showing anticancer properties through a different mechanism viz. intercalation, alkylating agents, topoisomerases, DHFR enzymes, and tubulin inhibitors. Benzimidazole derivatives act through a different mechanism and the substituents reported from the earlier and recent research articles are prerequisites for the synthesis of targeted based benzimidazole derivatives as anticancer agents. The review focuses on an easy comparison of the substituent essential for potency and selectivity through SAR presented in figures. This will further provide a better outlook or fulfills the challenges faced in the development of novel benzimidazole derivatives as anticancer.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2020 ◽  
Vol 17 (5) ◽  
pp. 640-654
Author(s):  
Hamidreza Akrami ◽  
Bibi Fatemeh Mirjalili ◽  
Omidreza Firuzi ◽  
Azadeh Hekmat ◽  
Ali Akbar Saboury ◽  
...  

Background: Chromene and anilinopyrimidine heterocyclics are attractive anticancer compounds that have inspired many researchers to design novel derivatives bearing improved anticancer activity. Methods: A series of pyrimidine-fused benzo[f]chromene derivatives 6a-x were synthesized as anticancer hybrids of 1H-benzo[f]chromenes and anilinopyrimidines. The inhibitory activity of the synthesized compounds 6a-x against cell viability of human chronic myelogenous leukemia (K562), human acute lymphoblastic leukemia (MOLT-4) and human breast adenocarcinoma (MCF-7) cell lines was evaluated using MTT assay. The interaction of the most promising compound with calf-thymus DNA was also studied using spectrometric titrations and Circular Dichroism (CD) spectroscopy. Results: Most compounds showed promising activity against tested cell lines. Among them, 2,4- dimethoxyanilino derivative 6g exhibited the best profile of activity against tested cell lines (IC50s = 1.6-6.1 μM) with no toxicity against NIH3T3 normal cell (IC50 >200 μM). The spectrometric studies exhibited that compound 6g binds to DNA strongly and may change DNA conformation significantly, presumably via a groove binding mechanism. Conclusion: The results of this study suggest that the prototype compound 6g can be considered as a novel lead compound for the design and discovery of novel anticancer agents.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 603
Author(s):  
Zinnia Shah ◽  
Umar Farooq Gohar ◽  
Iffat Jamshed ◽  
Aamir Mushtaq ◽  
Hamid Mukhtar ◽  
...  

Podophyllotoxin, along with its various derivatives and congeners are widely recognized as broad-spectrum pharmacologically active compounds. Etoposide, for instance, is the frontline chemotherapeutic drug used against various cancers due to its superior anticancer activity. It has recently been redeveloped for the purpose of treating cytokine storm in COVID-19 patients. Podophyllotoxin and its naturally occurring congeners have low bioavailability and almost all these initially discovered compounds cause systemic toxicity and development of drug resistance. Moreover, the production of synthetic derivatives that could suffice for the clinical limitations of these naturally occurring compounds is not economically feasible. These challenges demanded continuous devotions towards improving the druggability of these drugs and continue to seek structure-optimization strategies. The discovery of renewable sources including microbial origin for podophyllotoxin is another possible approach. This review focuses on the exigency of innovation and research required in the global R&D and pharmaceutical industry for podophyllotoxin and related compounds based on recent scientific findings and market predictions.


1984 ◽  
Vol 160 (4) ◽  
pp. 1241-1246
Author(s):  
C Jones

Plant lectins are cytotoxic and can be used to select for mutants of animal cells that exhibit structural changes in cell surface carbohydrates reflecting glycosylation defects. We isolated eight lectin mutants of Chinese hamster ovary (CHO) cells that appear to represent three different phenotype classes. These lectin mutants were much more sensitive to the cytotoxic action of normal rabbit serum (NRS) than were the parental cells. This increased cytotoxicity was heat sensitive, specifically absorbed, and inhibited by simple and complex carbohydrates. No killing was observed under conditions in which only the alternate complement pathway was active. An NRS-resistant subclone that was isolated from one lectin mutant was shown to have also regained wild type behavior when tested with the lectins. The possibility that naturally occurring antibodies in rabbit serum are reacting with incomplete carbohydrate chains on the surface of the lectin mutants is discussed.


2004 ◽  
Vol 2004 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Jamal M. Arif ◽  
Amal A. Al-Hazzani ◽  
Muhammed Kunhi ◽  
Fahad Al-Khodairy

In the past several decades, marine organisms have generously gifted to the pharmaceutical industries numerous naturally bioactive compounds with antiviral, antibacterial, antimalarial, anti-inflammatory, antioxidant, and anticancer potentials. But till date only few anticancer drugs (cytarabine, vidarabine) have been commercially developed from marine compounds while several others are currently in different clinical trials. Majority of these compounds were tested in the tumor xenograft models, however, lack of anticancer potential data in the chemical- and/or oncogene-induced pre-initiation animal carcinogenesis models might have cost some of the marine anticancer compounds an early exit from the clinical trials. This review critically discusses importance of preclinical evaluation, failure of human clinical trials with certain potential anticancer agents, the screening tests used, and choice of biomarkers.


2011 ◽  
Vol 6 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Ghazaleh Ghavami ◽  
Mohammad R. Kazemali ◽  
Soroush Sardari

Author(s):  
Rajiv Sharma ◽  
Vikram Jeet Singh ◽  
Pooja A Chawla

Background: The platinum (II) complexes as anticancer agents have been well explored for the development of novel analogs. Yet, none of them achieved clinical importance in oncology. At present, anticancer compounds containing platinum (II) complexes have been employed in the treatment of colorectal, lung, and genitourinary tumors. Among the platinum-based anticancer drugs, Cisplatin (cis-diamine dichloroplatinum (II), cis-[Pt(NH3)2Cl2]) is one of the most potent components of cancer chemotherapy. The nephrotoxicity, neurotoxicity and ototoxicity, and platinum compounds associated resistant cancer are some major disadvantages. Objective: With the rapidly growing interest in platinum (II) complexes in tumor chemotherapy, researchers have synthesized many new platinum analogs as anticancer agents that show better cytotoxicity, and less off-target effects with less cellular resistance. This follows the introduction of oxaliplatin, water-soluble carboplatin, multinuclear platinum and newly synthesized complexes, etc. Method: This review emphasizes recent advancements in drug design and development, the mechanism of platinum (II) complexes, their stereochemistry, current updates, and biomedical applications of platinum-based anticancer agents. Conclusion: In the last few decades, the popularity of platinum complexes as potent anti-cancer agents has risen as scientists have synthesized many new platinum complexes that exhibit better cytotoxicity coupled with less off-target effects.


Sign in / Sign up

Export Citation Format

Share Document