scholarly journals Superplasticity in Ultrafine-Grained Materials.

2018 ◽  
Vol 54 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Megumi Kawasaki ◽  
Terence G. Langdon

Abstract Superplasticity refers to the ability of a polycrystalline solid to exhibit a high elongation, of at least 400% or more, when testing in tension. The basic characteristics of superplastic flow are now understood and a theoretical model is available to describe the flow process both in conventional superplastic materials where the grain sizes are a few micrometers and in ultrafinegrained materials processed by severe plastic deformation where the grain sizes are in the submicrometer range. This report describes the basic characteristics of superplastic metals, gives examples of flow in ultrafine-grained materials, demonstrates the use of deformation mechanism mapping for providing a visual display of the flow processes and provides a direct comparison with the conventional model for superplastic flow. The report also describes the potential for using nanoindentation to obtain detailed information on the flow properties using only exceptionally small samples.

2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2008 ◽  
Vol 604-605 ◽  
pp. 97-111 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving very significant grain refinement in bulk metals. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 µm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This paper summarizes the fundamental principles of SPD processing and describes recent results demonstrating the occurrence of exceptional superplastic flow in these ultrafine-grained materials.


2014 ◽  
Vol 1013 ◽  
pp. 7-14
Author(s):  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) leads to very significant grain refinement with grains that are typically in the submicrometer or even the nanometer range. These ultrafine-grained (UFG) materials provide an opportunity for achieving exceptional flow properties including high strength at ambient temperature and, if the very small grains are reasonably stable, superplastic elongations at high testing temperatures. These flow characteristics are examined for materials processed using the two SPD procedures of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT).


Author(s):  
Yong Huang ◽  
Mason Morehead

Various methods for production of bulk ultrafine-grained (UFG)/nanostructured materials have been developed. Recently, a top-down approach named equal channel angular extrusion (ECAE), a form of severe plastic deformation (SPD), has gained increasing attention in making bulk UFG materials. Such bulk materials are favored for their high strength, wear resistance, ductility, and high strain-rate superplasticity, which makes them suitable for light weight engineering and medical applications. Further precision machining work is normally indispensable for structural applications after bulk ultrafine grained materials are manufactured from any SPD processes. Unfortunately, the microstructure stability issues in precision machining such materials are frequently ignored. Using an ECAE copper bar as an example, this study has investigated its machining-induced workpiece microstructure variation. It has been found that there was a small increase in the size parameter median and the average arithmetic and area weighted grain sizes when comparing those of machined and unmachined bars, and the measured grain sizes oscillated slightly in the radial direction of the machined bar. Dislocation density was shown to have the most reduction at the outer radius location of the machined ECAE bar where more heat and/or higher pressure were experienced.


2018 ◽  
Vol 385 ◽  
pp. 3-8 ◽  
Author(s):  
Terence G. Langdon

The occurrence of superplasticity may be traced to the classic work of Pearson conducted in the U.K. in 1934 when an elongation of 1950% was reported in a Pb-Sn eutectic alloy. Subsequently, much attention in Russia was devoted to this scientific curiosity and this led to the first book on superplasticity written by Prof. A.A. Presnyakov and published in 1964. Later, in 1985, Oscar Kaibyshev established in Ufa the Institute of Problems of Superplasticity of Metals of the Russian Academy of Sciences and this was, and remains to this day, the only institute in the world devoted exclusively to studies of the phenomenon of superplastic flow and the development through superplastic forming of complex-shaped parts. An important development occurred in 1988 with the publication of a classic report by Kaibyshev and co-workers describing the potential for achieving low temperature superplasticity in a metallic Al-Cu-Zr alloy that had been specially processed by severe plastic deformation (SPD) to produce a remarkably small grain size of only 300 nm. This report formed the basis for the later development of SPD processing as a major tool for the production of exceptional grain refinement and as a procedure for achieving large superplastic elongations that cannot be achieved using more conventional processing. This report describes this early work, the subsequent developments and the modern status of superplastic flow in ultrafine-grained metals.


2009 ◽  
Vol 633-634 ◽  
pp. 121-128 ◽  
Author(s):  
Eduard Kozlov ◽  
Nina Koneva ◽  
N.A. Popova

Deformation mechanisms of polycrystals as a function of the grain size in the 1nm…1cm interval are studied in this paper. The critical grain sizes are identified. Activity of dislocation and diffusion mechanisms is analyzed. The distribution of deformation in grains with different sizes within the same polycrystal is considered.


2016 ◽  
Vol 838-839 ◽  
pp. 51-58 ◽  
Author(s):  
Megumi Kawasaki ◽  
Terence G. Langdon

The synthesis of ultrafine-grained (UFG) materials is very attractive because small grains lead to excellent creep properties including superplastic ductility at elevated temperatures. Severe plastic deformation (SPD) is an attractive processing technique for refining microstructures of metallic materials to have ultrafine grain sizes within the submicrometer to even the nanometer level. Among the SPD techniques, most effective processing is conducted through equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) and there are numerous reports demonstrating the improved tensile properties at elevated temperature. This report demonstrates recent results on superplasticity in metals after ECAP and HPT. Moreover, superplastic flow of the UFG materials is evaluated by using flow mechanisms developed earlier for coarse-grained materials and depicted by plotting deformation mechanism maps which provide excellent visual representations of flow properties over a wide range of testing conditions.


2013 ◽  
Vol 829 ◽  
pp. 3-9
Author(s):  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving significant grain refinement, typically to the submicrometer or even the nanometer level. If these small grains are reasonably stable at elevated temperatures, it is possible to achieve excellent superplastic capabilities at very rapid strain rates. Recent developments on the flow properties of ultrafine-grained materials are examined and it is shown that the flow mechanisms can be readily depicted using deformation mechanism maps. Examples of maps are presented for materials processed by SPD techniques.


2008 ◽  
Vol 579 ◽  
pp. 29-40 ◽  
Author(s):  
Cheng Xu ◽  
Megumi Kawasaki ◽  
Roberto B. Figueiredo ◽  
Zhi Chao Duan ◽  
Terence G. Langdon

Equal-channel angular pressing (ECAP) is a convenient processing method for refining the grain size of bulk materials to the submicrometer level. Metallic alloys processed by ECAP often exhibit excellent superplastic characteristics including superplasticity at high strain rates. This paper summarizes recent experiments designed to evaluate the occurrence of superplasticity in representative aluminum and magnesium alloys and in the Zn-22% Al eutectoid alloy.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


Sign in / Sign up

Export Citation Format

Share Document