Baustoffanalyse mit Infrarotspektroskopie / Analysis of building materials by infrared spectroscopy

1998 ◽  
Vol 4 (3) ◽  
pp. 209-232
Author(s):  
R. Salzer ◽  
R. Lunkwitz ◽  
T. Braun ◽  
M. Mühle

Abstract Modern methods of instrumental analysis provide very convenient ways to characterize building materials. At present, wet chemical procedures are still in use not only for sample preparation but also for the real investigation. Raster electron microsopy and x-ray diffraction are the preferred instrumental methods of analysis in many places. In this review the high potential of optical molecular spectroscopy for characterization of building materials will be demonstrated by typical examples. Extensive series of wet chemical analysis may be substituted even by a single IR spectroscopic measurement combined with modern procedures of chemometric data evaluation.

2017 ◽  
Vol 8 ◽  
pp. 1257-1265 ◽  
Author(s):  
Urszula Klekotka ◽  
Magdalena Rogowska ◽  
Dariusz Satuła ◽  
Beata Kalska-Szostko

Ferrite nanoparticles with nominal composition Me0.5Fe2.5O4 (Me = Co, Fe, Ni or Mn) have been successfully prepared by the wet chemical method. The obtained particles have a mean diameter of 11–16 ± 2 nm and were modified to improve their magnetic properties and chemical activity. The surface of the pristine nanoparticles was functionalized afterwards with –COOH and –NH2 groups to obtain a bioactive layer. To achieve our goal, two different modification approaches were realized. In the first one, glutaraldehyde was attached to the nanoparticles as a linker. In the second one, direct bonding of such nanoparticles with a bioparticle was studied. In subsequent steps, the nanoparticles were immobilized with enzymes such as albumin, glucose oxidase, lipase and trypsin as a test bioparticles. The characterization of the nanoparticles was acheived by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and Mössbauer spectroscopy. The effect of the obtained biocomposites was monitored by Fourier transform infrared spectroscopy. The obtained results show that in some cases the use of glutaraldehyde was crucial (albumin).


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


1998 ◽  
Vol 13 (9) ◽  
pp. 2580-2587 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The characteristics of nanosized silicon nitride powders with doped Y2O3 and Al2O3 fabricated by a plasma-reacted chemical process were investigated. The chemical compositions of the powders were analyzed by wet chemical analysis. The morphology and the size distribution were determined by transmission electron microscopy (TEM). TEM with energy dispersive spectroscopy (EDS) was used to verify the existence of sintering additives in each individual particle. The crystal structure of the powders was identified by the selected area diffraction pattern (SADP). X-ray diffraction (XRD) technique was used for phase analysis and the measurement of degree of crystallinity. The characteristics of chemical bonding was analyzed by using Fourier transform infrared spectroscopy (FTIR).


2015 ◽  
Vol 24 (04) ◽  
pp. 1550050 ◽  
Author(s):  
Kieu Loan Phan Thi ◽  
Lam Thanh Nguyen ◽  
Anh Tuan Dao ◽  
Nguyen Huu Ke ◽  
Vu Tuan Hung Le

In this paper, ZnO nanorods were grown by wet chemical method on p-Si (100) substrate to form n-ZnO nanorods/p-Si (100) heterojunction. The optical, electrical, structural properties of n-ZnO nanorods/p-Si(100) heterojunction were analyzed by the photoluminescence (PL) spectroscopy, [Formula: see text]–[Formula: see text] measurement, X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The room temperature PL spectra reveal the good optical property of the heterojunction with strong UV peak at 385[Formula: see text]nm. The ZnO nanorods were vertically well-aligned on p-Si (100) and had an average height of about 1.6[Formula: see text][Formula: see text]m. The n-ZnO nanorods/p-Si (100) heterojunction also exhibits diode-like-rectifying-behavior.


2011 ◽  
Vol 284-286 ◽  
pp. 464-469
Author(s):  
Guo Hua Chen ◽  
Hai Tao Tang

Graphene nanoplatelet(GN)/ Magnetite compound powders with magnetite nano-particles coated on the surface of graphite sheets has been successfully prepared by the wet-chemical co-precipitation. The effects of reaction temperature and mole ratio of Fe2+/Fe3+ on ultimate products were investigated. It has been found that excellent magnetite/GN compound powders were obtained at 30 °C with the Fe2+/Fe3+ mole ratio of 5:1. The composition, structure and the electric and magnetic properties of products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating-sample magnetometer and four-point probe resistivity measurement.The compound powders have also exhibited the ferromagnetic properties at room temperature.


2014 ◽  
Vol 809-810 ◽  
pp. 649-653 ◽  
Author(s):  
Yun Guo ◽  
Qing Huang Zhang ◽  
Li Rong Wang ◽  
Wen Zhao Lu ◽  
Lin Jun Wang

A series of tourmaline/ZnO composite thin films were prepared by the facile route of low-temperature wet chemical method. X-ray diffraction (XRD) and Raman Spectroscopy analyses showed the hybrid spectroscopic characters of tourmaline and ZnO. With adding the different amount of tourmaline powder, ZnO tended to exhibit the different peak intensity of X-ray diffraction and Raman vibration. ZnO deposited into bending nanosheets and intersected to upstanding nanostucture on the surface of tourmaline particles in SEM images. The optical adsorption properities obtained by the UV-Vis spectra indicated that the addition of tourmaline had enhanced the maximum absorption strength, and had shifted the absorption wavelength and the absorption range of ZnO crystals.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 676
Author(s):  
Christian Bäucker ◽  
Soeren Bauch ◽  
Rainer Niewa

We report the successful synthesis of Rb2[Mn(NH2)4] and Cs2[Mn(NH2)4] from ammonothermal conditions at 723 K and pressures above 850 bar. Both compounds were obtained single phase according to powder X-ray diffraction. The crystal structures were determined by single crystal X-ray diffraction. For Rb2[Mn(NH2)4] we have obtained the high-temperature phase. The structures are analyzed with respect to the earlier reported alkali metal amidomanganates. Upon heating in inert atmosphere Cs2[Mn(NH2)4] decomposes to manganese nitrides. IR spectroscopic results are reported.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Le Thi Vinh ◽  
Tran Thu Huong ◽  
Ha Thi Phuong ◽  
Hoang Thi Khuyen ◽  
Nguyen Manh Hung ◽  
...  

We report on the synthesis and characterization of folic acid-conjugated silica-modified TbPO4·H2O nanorods for biomedical applications. The uniform shape TbPO4·H2O nanorods with a hexagonal phase were successfully synthesized by wet chemical methods. A novel TbPO4·H2O@silica-NH2 nanocomplex was then formed by functionalizing these nanorods with silica and conjugating with biological agents. The field emission scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction reveal the morphology and structure of the nanorods, with their controllable sizes (500-800 nm in length and 50-80 nm in diameter). The Fourier transform infrared spectroscopy was employed to identify chemical substances or functional groups of the TbPO4·H2O@silica-NH2 nanocomplex. The photoluminescence spectra show the four emission lines of TbPO4·H2O@silica-NH2 in folic acid at 488, 540, 585, and 621 nm under 355 nm laser excitation, which could be attributed to the 5D4-7 F j ( J = 6 , 5 , 4 , 3 ) transitions of Tb3+. The TbPO4·H2O@silica-NH2 nanorods were conjugated with folic acid for the detection of MCF7 breast cancer cells. The obtained results show a promising possibility for the recognition of living cells that is of crucial importance in biolabeling.


1983 ◽  
Vol 26 ◽  
Author(s):  
Christine A. Langton ◽  
Della M. Roy

ABSTRACTDurability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques.


2020 ◽  
Vol 15 (2) ◽  
pp. 62-68
Author(s):  
Viorina Gorinchoy

A new tetra-homonuclear iron(III) cluster, [Fe4O2(Sal)4(H2O)6]·4DMA·0.75H2O, where Sal= salicylic acid and DMA= N,N-dimethylacetamide consolidated via two µ3-oxo- and four salicylate-bridges was synthesized and characterized by IR spectroscopic method as well as by single crystal X-ray diffraction analysis. The structure of the obtained tetranuclear compound consists of four FeIII atoms in a “butterfly” arrangement. The coordination sphere of each of the two central FeIII atoms is generated by two μ3-oxo-bridging atoms and four oxygen atoms provided by the tridentate-bridging Sal2- ligands, while the coordination polyhedron of another two iron atoms involve six oxygen atoms from three water molecules, two salicylic and one μ3-oxigen atom. The Fe-O distances within Fe-O-Fe bridge are of 2.102(3) Å (for wing-body) and 2.038(3) Å (for body-body).


Sign in / Sign up

Export Citation Format

Share Document