A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration

2020 ◽  
Vol 31 (4) ◽  
pp. 351-362 ◽  
Author(s):  
Alessio Guglielmi

AbstractAt the end of 19th century, Adolf von Strümpell and Sigmund Freud independently described the symptoms of a new pathology now known as hereditary spastic paraplegia (HSP). HSP is part of the group of genetic neurodegenerative diseases usually associated with slow progressive pyramidal syndrome, spasticity, weakness of the lower limbs, and distal-end degeneration of motor neuron long axons. Patients are typically characterized by gait symptoms (with or without other neurological disorders), which can appear both in young and adult ages depending on the different HSP forms. The disease prevalence is at 1.3–9.6 in 100 000 individuals in different areas of the world, making HSP part of the group of rare neurodegenerative diseases. Thus far, there are no specific clinical and paraclinical tests, and DNA analysis is still the only strategy to obtain a certain diagnosis. For these reasons, it is mandatory to extend the knowledge on genetic causes, pathology mechanism, and disease progression to give clinicians more tools to obtain early diagnosis, better therapeutic strategies, and examination tests. This review gives an overview of HSP pathologies and general insights to a specific HSP subtype called spastic paraplegia 31 (SPG31), which rises after mutation of REEP1 gene. In fact, recent findings discovered an interesting endoplasmic reticulum antistress function of REEP1 and a role of this protein in preventing τ accumulation in animal models. For this reason, this work tries to elucidate the main aspects of REEP1, which are described in the literature, to better understand its role in SPG31 HSP and other pathologies.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1678
Author(s):  
Liriopé Toupenet Marchesi ◽  
Marion Leblanc ◽  
Giovanni Stevanin

Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.


Autophagy ◽  
2021 ◽  
pp. 1-17
Author(s):  
Mukhran Khundadze ◽  
Federico Ribaudo ◽  
Adeela Hussain ◽  
Henry Stahlberg ◽  
Nahal Brocke-Ahmadinejad ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Takuya Morikawa ◽  
Shiroh Miura ◽  
Takahisa Tateishi ◽  
Kazuhito Noda ◽  
Hiroki Shibata

AbstractSpastic paraplegia (SPG) type 4 is an autosomal dominant SPG caused by functional variants in the SPAST gene. We examined a Japanese family with three autosomal dominant SPG patients. These patients presented with typical symptoms of SPG, such as spasticity of the lower limbs. We identified a rare nonsynonymous variant, NM_014946.4:c.1252G>A [p.Glu418Lys], in all three family members. This variant has previously been reported in a Russian SPG family as a “likely pathogenic” variant.5 Ascertainment of additional patients carrying this variant in an unrelated Japanese SPG family further supports its pathogenicity. Molecular diagnosis of SPG4 in this family with hereditary spastic paraplegia is confirmed.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 137 ◽  
Author(s):  
Antonia Cianciulli ◽  
Chiara Porro ◽  
Rosa Calvello ◽  
Teresa Trotta ◽  
Dario Domenico Lofrumento ◽  
...  

Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.


2017 ◽  
Vol 75 (11) ◽  
pp. 813-818 ◽  
Author(s):  
Ingrid Faber ◽  
Eduardo Rafael Pereira ◽  
Alberto R. M. Martinez ◽  
Marcondes França Jr ◽  
Hélio Afonso Ghizoni Teive

ABSTRACT The authors have constructed a brief timeline of major clinical research related to hereditary spastic paraplegia (HSP). This timeline summarizes the evolution of HSP research, from the first clinical descriptions by Adolf von Strümpell in 1880 to the present day, with the transformation of these diseases into a rapidly-growing and heterogeneous group of neurogenetic diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jacqueline Kelsey Reid ◽  
Hedwich Fardau Kuipers

Astrocyte heterogeneity is a rapidly evolving field driven by innovative techniques. Inflammatory astrocytes, one of the first described subtypes of reactive astrocytes, are present in a variety of neurodegenerative diseases and may play a role in their pathogenesis. Moreover, genetic and therapeutic targeting of these astrocytes ameliorates disease in several models, providing support for advancing the development of astrocyte-specific disease modifying therapies. This review aims to explore the methods and challenges of identifying inflammatory astrocytes, the role these astrocytes play in neurological disorders, and future directions in the field of astrocyte heterogeneity.


2020 ◽  
Vol 2020 ◽  
pp. 1-3
Author(s):  
Nathaniel M. Robbins ◽  
Jillian R. Ozmore ◽  
Thomas L. Winder ◽  
Pedro Gonzalez-Alegre ◽  
Tanya M. Bardakjian

Some causes of spastic paraplegia are treatable and many are not. Diagnostic work-up to determine the etiology can be costly and invasive. Here we report the case of a man with slowly progressive spastic paraparesis. Using a multigene next-generation sequencing (NGS) panel, we identified a novel variant in the consensus splice site of the SPAST gene (exon 13, c.1536G>A, heterozygous), affecting codon 512 of the SPAST mRNA. The observed variant segregated with the disease in four tested family members. In this case, genetic confirmation obviated the need for additional testing such as MRI and lumbar puncture and helped the patient and his family understand his condition and prognosis. We conclude with a brief discussion of the SPG4/SPAST gene and the role of multigene panels in the diagnosis and management of hereditary spastic paraplegia.


2020 ◽  
pp. 197140092095382
Author(s):  
Emiliano Ruiz Romagnoli ◽  
Manuel Perez Akly ◽  
Luis A Miquelini ◽  
Jorge A Funes ◽  
Cristina H Besada

Hereditary spastic paraplegias are an uncommon group of monogenic diseases that include 79 types of genetic disorders. The most frequent cause of recessive hereditary spastic paraplegia is a mutation in the spastic paraplegia gene type 11 followed by type 15. This group is usually associated with non-specific clinical features like cognitive decline and may precede the progressive weakness and spasticity of lower limbs. The magnetic resonance imaging hallmark of hereditary spastic paraplegia is thinning of the spinal cord. However, brain magnetic resonance imaging may provide relevant clues for specific hereditary spastic paraplegia subtypes, and thinning of the corpus callosum has been described as the most frequent abnormality in almost one-third of recessive hereditary spastic paraplegias. Moreover, a characteristic abnormality affecting the forceps minor of the corpus callosum has been recently reported as the “ears of the lynx” sign and is highly suggestive of type 11 and 15 hereditary spastic paraplegias. We report a patient who was diagnosed with hereditary spastic paraplegia type 11 by exome genetic testing, presenting the ears of the lynx sign in the first magnetic resonance imaging assessment.


Sign in / Sign up

Export Citation Format

Share Document