Fiber loading and treatment effects on dry sliding wear of Palmyra fruit fiber composites

2016 ◽  
Vol 23 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Irullappasamy Sankar ◽  
Durairaj Ravindran

AbstractThis study focused on the dry sliding wear behavior of the natural fiber called borassus fruit fiber (Palmyra fruit fiber) reinforced polyester composite. Composites are molded with different fiber weight fractions. Composites are fabricated by using both the untreated and the mercerized fibers. Mercerizations of the fibers are done with 1 N solution. The structural properties like tensile, flexural, and impact strengths are experimented as per ASTM and reported. The dry sliding wear study was done using the Pin-on-Disc apparatus as per ASTM G99. In particular, more emphasis has been devoted for wear behaviors at different velocity conditions and loads. Based on the experimental data, the optimum sliding velocity and the corresponding load were suggested.

2019 ◽  
Vol 969 ◽  
pp. 140-145
Author(s):  
G.V. Jagadeesh ◽  
J. Satish ◽  
Egala Rajesh ◽  
Gangi Srinivasu

The application range of natural fiber composites are increasing rapidly in several engineering areas. Unidirectional short castor oil fiber reinforced epoxy composites are fabricated using hand layup process with 40 vol% and 5mm length. Dry sliding wear tests are conducted using pin on disc tribometer. Applied loads are 15, 30 & 45N and track diameters were kept at 100, 110 and 120mm to achieve sliding distances of 1000, 2000 and 3000m respectively with adjustment of running times 6.5, 12 and 16 minutes at speed of 500 RPM. Full factorial DoE is employed and influence of each parameter on amount of wear, CoF and temperature are studied using ANOVA. It is found that load is the highly influential factor affecting amount of wear, CoF and temperature followed by sliding distance and other factors. Also, regression models are developed with good fit. The developed models predicted the results with 0-8 % error.


Author(s):  
Sajeeb Rahiman ◽  
Robinson Smart

Dry sliding wear and immersion corrosion behaviors of Al 5083-based hybrid composite reinforced with multiwalled carbon nanotube (MWCNT), Molybdenum boride (MoB) and nickel (Ni) are studied with different weight percentages. The reinforcement weight percentages of MWCNT ranges from 0 to 1.5, that of MoB from 1 to 4 and for Ni from 2 to 8. Dry sliding wear behavior at room temperature is studied using Pin on Disc by varying the sliding distances from 500 to 2000m, load from 10 to 40 N and sliding velocity from 0.25 to 1.75m/s. The wear studies revealed that there is a considerable decrease in wear rate for composites than the alloy material with increase in %wt of reinforcements for all test parameters. The worn surface analysis revealed that there are two types of wear mechanisms namely abrasive and adhesive. The uniform immersion corrosion tests also showed decreasing rate with increase in reinforcements.


2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Kousik Kumaar ◽  
◽  
K. Somasundara Vinoth ◽  
Kavitha M ◽  
◽  
...  

This article aims in exploring the dry sliding wear performances on the aluminum (AA7075) metal matrix composites reinforced with molybdenum disulphide which is a solid lubricant using response surface methodology (RSM). Specific Wear Rate (SWR) for the AA7075 pure alloy, AA7075+2wt% molybdenum disulphide and AA7075+4wt% molybdenum disulphide were measured according to ASTM G99 standards in pin-on-disc apparatus. Design of experiments was selected with changed parameters like the varying percentage of molybdenum disulphide (%), applied load (N), and sliding velocity (m/s) based on Central Composite Design in response surface methodology considering them as continuous factors. Experiments for the specific wear rate of pure alloy and the composites were conducted. The volume loss was measured using the pin-on-disc apparatus from which the specific wear rate value was calculated. The obtained results are analyzed and a mathematical model was formulated using the response surface methodology. The optimum level parameters for the specific wear rate has been identified and the results of the experiment specify that the sliding velocity and molybdenum disulphide percentage have a substantial role in controlling the wear behaviour of composites when compared with the other parameter. The optimum condition for the specific wear rate was identified and experimented with for studying the result.


2013 ◽  
Vol 6 (2) ◽  
pp. 139-153
Author(s):  
Israa .A.K

This research is devoted to study the effect of addition of different weight percent from SiCp ( 2, 4, 6, 8 ) to Al– 4 Cu alloy which have been fabricated by liquid metallurgy method on the dry sliding wear behavior and mechanical properties. Wear characteristics of Al–SiC composites have been investigated under dry sliding conditions and compared with base alloy. Dry sliding wear tests have been carried out using pin-on-disk wear test under normal applied loads 5, 10, 15 and 20 N and at different sliding velocity of (2.7, 3.7, 4.7) m/sec. It was also observed that the wear rate varies linearly with increases normal applied load but lower in composites as compared to the base material. The wear mechanism appears to be oxidative for both Al – Cu alloy and composites under the given conditions of load and sliding velocity as indicated by optical microscopic of the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight percent of silicon carbide. The best results have been obtained at 8 % wt SiC . We also observed that the yield strength, tensile strength increases with increasing wt% of SiC , but the ductility decreases.


2010 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Muna K. Abbass

 The aim of the present research is to study the effect of cadmium addition on microstructure and wear behavior of the alloy (Al-12%Si) under dry sliding conditions. Wear behavior was studied by using the Pin-On- Disc technique under different conditions at applied loads 5-20 N, at constant sliding speed and in constant time. The steel disc hardness was 35HRc. All alloys were prepared with different percentages of cadmium (1.0, 2.0, 3.0) wt%. Also the base alloy was prepared by melting and pouring the molten metal in a metallic mold. It was found that the cadmium addition to Al-Si matrix decreases the wear rate and improves the wear properties for alloys containing -Cd under loads above 10N. It was also found that the alloy Al-12%Si containing 3%Cd is the best alloy in wear resistance and friction coefficient. This is due to presence of the Cd-phase as cuboids or hard particles distributed in a eutectic matrix which reduces the friction coefficient at high loads (20N). 


2020 ◽  
Vol 62 (5) ◽  
pp. 525-534
Author(s):  
S. Magibalan ◽  
P. Senthilkumar ◽  
C. Senthilkumar ◽  
M. Prabu

Abstract The present research work is focused on the production of aluminum alloy 8011 with 12 wt.-% fly ash composite by using the stir casting method. A three-level central composite design experiment is developed using response surface methodology (RSM) with various parameters. Load, time and sliding velocity are varied in the range of (5-15 N), (5-15 min) and (1.5-4.5 m × s-1), respectively. Dry sliding wear tests are performed as per the experimental design using a pin-on-disc at room temperature. This paper describes how optimization studies were carried out on a dry sliding wear process with multi-response characteristics based on MCDM using the TOPSIS approach. The process parameters, load, time and sliding velocity are optimized with multi-response characteristics, including the wear rate (WR), and the coefficient of friction (COF). A sensitivity analysis is also carried out and compared with the relative impact of input parameters on wear behavior in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The experimental results indicate that the multi-response characteristics of aluminum alloy 8011 with 12 wt.-% fly ash composite used during the wear behavior process can be enhanced through the TOPSIS method.


2021 ◽  
Vol 13 (9) ◽  
pp. 1825-1829
Author(s):  
Fang Liu ◽  
Fuxiao Yu ◽  
Dazhi Zhao

In present paper, the dry sliding wear behaviors of wrought Al-12.7Si-0.7Mg alloy have been investigated using a pin-on-disc machine. The effect of various parameters, such as alloy conditions, sliding speed, and normal pressure, has been investigated. Wear surface was characterized by SEM/EDX microanalysis. The microstructure, hardness and tensile properties of the extruded profile were investigated with the aim of understanding the wear and friction mechanisms. The present results reveal an improvement in the mechanical and tribological properties, obtained due to microstructure characterized by fine Si particles uniformly distributed in the Al matrix of fine equiaxed grains, as promoted by hot extrusion. It was also revealed that higher hardness and the lower aspect ratio of eutectic Si particles contributed to the better wear resistance.


Sign in / Sign up

Export Citation Format

Share Document