scholarly journals Processing-structure-property correlations of in situ Al/TiB2 composites processed by aluminothermic reduction process

2018 ◽  
Vol 25 (5) ◽  
pp. 869-879
Author(s):  
A.S. Vivekananda ◽  
S. Balasivanandha Prabu ◽  
R. Paskaramoorthy

AbstractThis paper reports the influence of process parameters on the size and distribution of in situ titanium diboride (TiB2) particles within the aluminium (Al) matrix. TiB2 particles were formed as a result of the in situ reaction of potassium hexafluorotitanate (K2TiF6) and potassium tetra fluoroborate (KBF4) with molten Al. Two process parameters, namely, the addition time (AT) and holding time (HT) of precursor salts, were considered. The Al/TiB2 composites were produced by allowing the in situ reaction to occur at various ATs (10, 20, and 30 min) and HTs (20, 30, and 40 min). Results showed that the formation of TiB2 was confirmed by XRD analysis. The microstructure, TiB2 particle size, hardness, yield strength (YS), and ultimate tensile strength (UTS) were strongly affected by the said process parameters. The variations in hardness and UTS were highly consistent with those found in the microstructure of the composites. Compared with the Al parent material, the increase in the average hardness and UTS of the composite were 51% and 44%, respectively. This improvement was achieved for the composite sample fabricated with 20 min of AT and 30 min of HT. At this condition, the composite displayed near-uniform particle distribution.

2016 ◽  
Vol 25 (5-6) ◽  
pp. 165-169
Author(s):  
C. Rajaravi ◽  
P.R. Lakshminarayanan

AbstractThe paper describes a different condition of pouring temperature by sand and permanent mould to produce A356-6 wt% TiB2 metal matrix composites by in-situ method salt metal reaction route. The observation of SEM micrographs shows particle distribution of the TiB2 and it appears in hexagonal shape in Al matrix. The results of X-ray diffraction (XRD) analysis confirmed the formation of those TiB2 particulates and the results showed TiB2 particles are homogeneously dispersed throughout the matrix metal. Subsequent structure-property evaluation studies indicated sub-micron size reinforcement of in-situ formed TiB2 particles with improved physical and mechanical properties as compared to sand and permanent mould of Al-TiB2 composites. From, the permanent mould Al-TiB2 composite has an advantage of increase the properties over sand mould Al-TiB2 composite.


2021 ◽  
Vol 1027 ◽  
pp. 170-176
Author(s):  
Li Mei Wang ◽  
Jun Bo Liu ◽  
Jun Hai Liu

In order to improve the quality and properties of the coating, a certain amount of Ti was added to the plasma cladding Fe-Cr-C coating in the early stage. And Fe-Cr-C-Ti composite powder was prepared by precursor carbonization-composition process. In situ synthesized TiC-Fe-Cr coatings were fabricated on substrate of Q235 steel by plasma cladding process with Fe-Cr-C-Ti composite powder. Microstructure of the coating with different process parameters, including cladding current, cladding speed, number of overlapping cladding layers, were analyzed by scanning electron microscope (SEM). The results show that the structure of the TiC-Fe-Cr coating is greatly affected by the fusion current, the cladding speed and the overlapping cladding process. In this test, when the cladding current of 300A and the cladding process parameter of the cladding speed of 50 mm/min are clad with three layers, a well-formed and well-structured TiC-Fe-Cr coating can be obtained. Which are the best synthetic process parameters in this test.


2010 ◽  
Vol 97-101 ◽  
pp. 3967-3973 ◽  
Author(s):  
Hai Chao Cui ◽  
Feng Gui Lu ◽  
Xin Hua Tang ◽  
Shun Yao

Laser full-penetration welding of novel in situ TiB2 particulate reinforced ZL101 composites was studied using three different welding velocities synchronized with proper laser power. The optimal welding process parameters for laser full-penetration welding of in situ TiB2 reinforced ZL101 composites were suggested. The SEM results show that few pores and uniform particle distribution were obtained. TiB2 particles are intimately contacted with Al matrix according to the results of high-resolution TEM. There was no evidence of chemical reaction at the interface.


2021 ◽  
Vol 320 ◽  
pp. 83-89
Author(s):  
Dmytro Tkachivskyi ◽  
Mart Viljus ◽  
Rainer Traksmaa ◽  
Maksim Antonov ◽  
Andrei Surzhenkov ◽  
...  

This study aimed to compare the X3CrNiMo17-13-3 stainless steel based plasma transferred arc (PTA) cladded hardfacings, reinforced with the in-situ synthesized Cr and Ti carbides. Carbon black and either pure Cr, pure Ti, or TiO2 were utilized as reinforcement precursors (the respective hardfacings are further referred to as Cr+C, Ti+C and TiO2+C). The pre-placed mixtures of matrix and reinforcement precursor powders were remelted by the plasma transferred arc, applying the preliminarily optimized process parameters (95 A, 22 – 24 V, 0.2 mm/s). As a reference, the unreinforced stainless steel hardfacing was used. The carbide reinforcement was successfully in-situ synthesized in all the hardfacings. The Cr + C hardfacing exhibited the largest average hardness (556 ± 29 HV1), while the TiO2 + C hardfacing had the largest average Young’s modulus (156.3 ± 19.7 GPa). The Cr + C and Ti + C hardfacings demonstrated the 2.3 and 2.1 times higher resistance to abrasive wear than the reference hardfacing. The TiO2 + C hardfacing showed 1.5 times lower wear resistance than the reference hardfacing presumably due to a lack of the reinforcement and a lower strain hardening ability.


2018 ◽  
Vol 25 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Hongying Li ◽  
Shouxin Zhao ◽  
Yangxun Ou ◽  
Yongqiu Lai

Abstract In situ TiB2/Al-4.5Cu composites with different TiB2 particle amounts were fabricated by the salt-metal reaction technique. The effects of in situ TiB2 on the microstructure and mechanical properties of Al-4.5Cu alloy were studied in this paper. The results showed that in situ TiB2 particles had significant effect on refining grain size and improving mechanical properties of as-cast Al-4.5Cu alloy. With the amounts of TiB2 particles increasing, the yield strength and ultimate tensile strength were improved, while the elongation reduced. The strengthening mechanisms of the in situ particle-reinforcing Al matrix composites were discussed, and the yield strength was predicted accurately by accounting for the three strengthening mechanisms and particle distribution.


Sign in / Sign up

Export Citation Format

Share Document