Investigations on Polyvinyl Chloride - Carbon Black Blends

Author(s):  
D. Hui ◽  
M. Chipara ◽  
Κ. T. Lau ◽  
J. Sankar ◽  
M. D. Chipara ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Toan Duy Nguyen ◽  
Chinh Thuy Nguyen ◽  
Van Thanh Thi Tran ◽  
Giang Vu Nguyen ◽  
Hai Viet Le ◽  
...  

Plasticized polyvinyl chloride (PVC) was fabricated using epoxidized soybean oil (ESBO) as a secondary bioplasticizer with dioctyl phthalate (DOP). The PVC/MFA/CB composites were prepared by melt mixing of the plasticized PVC with modified fly ash (MFA), carbon black N330 (CB), and polychloroprene (CR) in a Haake Rheomix mixer using a rotation speed of 50 rpm at 175°C for 6 min and then compressed by Toyoseiki pressure machine under 15 MPa. The effect of ESBO content on morphology, melt viscosity, tensile properties, and flame retardancy of PVC/MFA/CB composites was investigated. The obtained results showed that the incorporation of ESBO has significantly enhanced the processing ability, Young’s modulus, tensile strength, and elongation at break of the PVC/MFA/CB composites. The torque of PVC/MFA/CB composites was increased to approximately 12% when 50 wt% of DOP was replaced by ESBO. When ESBO was 20 wt% in comparison with DOP weight, the elongation at break, tensile strength, and Young’s modulus of the composites were increased to 48%, 24%, and 4.5%, respectively. Correspondingly, thermogravimetric analysis results confirmed that ESBO had improved the thermostability of the PVC composites. The ESBO have potential as a secondary bioplasticizer replacement material for DOP owing to their better thermomechanical stability.


2018 ◽  
Vol 4 (1) ◽  
pp. 15 ◽  
Author(s):  
Iftekharul Islam ◽  
Shahin Sultana ◽  
Swapan Kumer Ray ◽  
Husna Parvin Nur ◽  
Md. Hossain ◽  
...  

1982 ◽  
Vol 53 (10) ◽  
pp. 6867-6879 ◽  
Author(s):  
K. T. Chung ◽  
A. Sabo ◽  
A. P. Pica

Author(s):  
T. G. Gregory

A nondestructive replica technique permitting complete inspection of bore surfaces having an inside diameter from 0.050 inch to 0.500 inch is described. Replicas are thermally formed on the outside surface of plastic tubing inflated in the bore of the sample being studied. This technique provides a new medium for inspection of bores that are too small or otherwise beyond the operating limits of conventional inspection methods.Bore replicas may be prepared by sliding a length of plastic tubing completely through the bore to be studied as shown in Figure 1. Polyvinyl chloride tubing suitable for this replica process is commercially available in sizes from 0.037- to 0.500-inch diameter. A tube size slightly smaller than the bore to be replicated should be used to facilitate insertion of the plastic replica blank into the bore.


Author(s):  
Akira Tanaka ◽  
David F. Harling

In the previous paper, the author reported on a technique for preparing vapor-deposited single crystal films as high resolution standards for electron microscopy. The present paper is intended to describe the preparation of several high resolution standards for dark field microscopy and also to mention some results obtained from these studies. Three preparations were used initially: 1.) Graphitized carbon black, 2.) Epitaxially grown particles of different metals prepared by vapor deposition, and 3.) Particles grown epitaxially on the edge of micro-holes formed in a gold single crystal film.The authors successfully obtained dark field micrographs demonstrating the 3.4Å lattice spacing of graphitized carbon black and the Au single crystal (111) lattice of 2.35Å. The latter spacing is especially suitable for dark field imaging because of its preparation, as in 3.), above. After the deposited film of Au (001) orientation is prepared at 400°C the substrate temperature is raised, resulting in the formation of many square micro-holes caused by partial evaporation of the Au film.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


Sign in / Sign up

Export Citation Format

Share Document