scholarly journals Assessment of the effect of rainfall dynamics on the storm overflow performance

Author(s):  
Bartosz Szeląg

Abstract Assessment of the effect of rainfall dynamics on the storm overfl ow performance. This research study analyzes the effect of the rainfall characteristics (total and maximum 10-, 15- and 30-minute rainfall depth, its duration, the dry weather period) on the performance of the emergency overflow weir located at the inflow to an existing treatment plant. The analyses used the numerical calculation results of the inflow hydrographs performed in the SWMM (Storm Water Management Model) program on the basis of six-year-long rainfall measurement sequence. The obtained simulation results for the analysed catchment allowed for the performance of statistical analyses, which demonstrated that the volume of stormwater discharge, the maximum instantaneous flow and the share of stormwater volume discharged through the emergency overflow weir in relation to the total volume of the inflow hydrograph from the catchment are affected by the maximum 30-minute rainfall depth, whereas the discharge duration is affected by the depth of the catchment rainfall layer. Taking into account the results of statistical and hydraulic calculations it can be concluded that in the case of the analysed catchment the performance of the emergency overflow weir is affected to the greatest extent by the rainfall intensity distribution.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 929 ◽  
Author(s):  
David Dunkerley

In many studies of landsurface processes, the intensity of rainfall events is expressed with clock-period indexes such as I30, the wettest 30-minute interval within a rainfall event. Problematically, the value of I30 cannot be estimated for rainfall events shorter than 30 min, excluding many intense convective storms. Further, it represents a diminishing proportion of increasingly long rainfall events, declining to <2% of the duration of a 30-hour event but representing 25% of the duration of a two-hour event. Here, a new index termed EDf5 is proposed: It is the rainfall depth in the wettest 5% of the event duration. This can be derived for events of any duration. Exploratory determinations of EDf5 are presented for two Australian locations with contrasting rainfall climatologies—one arid and one wet tropical. The I30 index was similar at both sites (7.7 and 7.9 mm h−1) and was unable to differentiate between them. In contrast, EDf5 at the arid site was 7.4 mm h−1, whilst at the wet tropical site, it was 3.8 mm h−1. Thus, the EDf5 index indicated a greater concentration of rain at the arid site where convective storms occurred (i.e., the intensity sustained for 5% of event duration at that site is higher). The EDf5 index can be applied to short, intense events that can readily be included in the analysis of event-based rainfall intensity. I30 therefore appears to offer less discriminatory power and consequently may be of less value in the investigation of rainfall characteristics that drive many important landsurface processes.


Author(s):  
Gaolei Zhao ◽  
Yanlei Wan ◽  
Zhiwen Lei ◽  
Ruifeng Liang ◽  
Kefeng Li ◽  
...  

Abstract The acceleration of urbanization has brought significant changes to the urban underlying surface. As a result, the flood disaster caused by stormwater runoff has become increasingly prominent. The infiltration function of the permeable area can lead to flood disasters, but the extent and depth of the effect are still unclear. Therefore, based on the storm water management model (SWMM) and Green-Ampt infiltration model, this paper discussed the effect of improving soil saturated hydraulic conductivity (SSHC) and soil capillary suction head (SCSH) on the stormwater runoff process. The results show that the increase of SSHC and SCSH can significantly reduce runoff and increase infiltration. However, the improvement of SSHC can more effectively alleviate flood disasters compared with the improvement of SCSH. And the change of SSHC has a significant effect on the stormwater runoff with a critical SSHC value while the effect can be ignored. In addition, there is a cross value; when the value of SSHC and SCSH is larger than the cross value, the difference between SSHC and SCSH in reducing runoff duration no longer exists. The critical value and cross value are not constant but change with the change of rainfall intensity.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 640 ◽  
Author(s):  
Ioannis M. Kourtis ◽  
Vassilios A. Tsihrintzis ◽  
Evangelos Baltas

The present work aims at quantifying the benefit of Low Impact Development (LID) practices in reducing peak runoff and runoff volume, and at comparing LID practices to conventional stormwater solutions. The hydrologic-hydraulic model used was the Storm Water Management Model (SWMM5.1). The LID practices modeled were: (i) Green roofs; and (ii) Permeable pavements. Each LID was tested independently and compared to two different conventional practices, i.e., sewer enlargement and detention pond design. Results showed that for small storm events LID practices are comparable to conventional measures, in reducing flooding. Overall, smaller storms should be included in the design process.


2018 ◽  
Vol 45 ◽  
pp. 00058 ◽  
Author(s):  
Ireneusz Nowogoński ◽  
Ewa Ogiołda

Using SWMM 5.1 (Storm Water Management Model) software, a model of sewage system functioning in Głogów was developed. It was calibrated based on the results of field studies from the years 2011– 14, while the properness of its activity was verified for the results of measurements carried out during the period 1998–2000. The verification of the model showed acceptable discrepancies between the measured and simulated values of channel depth. Factors which caused differences were indicated and, on the basis of this, conclusions pertaining to further studies were formulated.


2015 ◽  
Vol 31 (4) ◽  
pp. 462-476 ◽  
Author(s):  
Gaurav V. Jain ◽  
Ritesh Agrawal ◽  
R.J. Bhanderi ◽  
P. Jayaprasad ◽  
J.N. Patel ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


2019 ◽  
Vol 67 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Lei Su ◽  
Zongqiang Xie ◽  
Wenting Xu ◽  
Changming Zhao

Abstract Mixed evergreen-deciduous broadleaved forest is the transitional type of evergreen broadleaved forest and deciduous broadleaved forest, and plays a unique eco-hydrologic role in terrestrial ecosystem. We investigated the spatio-temporal patterns of throughfall volume of the forest type in Shennongjia, central China. The results indicated that throughfall represented 84.8% of gross rainfall in the forest. The mean CV (coefficient of variation) of throughfall was 27.27%. Inter-event variability in stand-scale throughfall generation can be substantially altered due to changes in rainfall characteristics, throughfall CV decreased with increasing rainfall amount and intensity, and reached a quasi-constant level when rainfall amount reached 25 mm or rainfall intensity reached 2 mm h−1. During the leafed period, the spatial pattern of throughfall was highly temporal stable, which may result in spatial heterogeneity of soil moisture.


2012 ◽  
Vol 170-173 ◽  
pp. 2380-2385
Author(s):  
Xiao Min Zhu ◽  
Bing Huang ◽  
Shu Dong Wang ◽  
Jin Long Zheng ◽  
Bo Yao ◽  
...  

A model for simulating combined drainage networks in Chuangfang river basin of Kunming City based on the Storm Water Management Model was established. The type and period of using water base on residential area, marketplace, school area, and guesthouse area Kunming city were introduced into the model, and their infection for drainage system was research. The results show that simulation results of two outlets flow have coherence with monitoring data based two typical rainfall in Kunming, the Nash-Sutcliffe efficiency coefficient is 0.71-0.82. And the model can be using analyze ‘bottleneck’ nodes and restricting conduits, simulating the running status of drainage network of combined drainage at raining and draining peak time of sewage water. The research provide strong technical support for rebuild drainage network in Kunming or other city.


Sign in / Sign up

Export Citation Format

Share Document