Algebraic conditions and the sparsity of spectrally arbitrary patterns
Abstract Given a square matrix A, replacing each of its nonzero entries with the symbol * gives its zero-nonzero pattern. Such a pattern is said to be spectrally arbitrary when it carries essentially no information about the eigenvalues of A. A longstanding open question concerns the smallest possible number of nonzero entries in an n × n spectrally arbitrary pattern. The Generalized 2n Conjecture states that, for a pattern that meets an appropriate irreducibility condition, this number is 2n. An example of Shitov shows that this irreducibility is essential; following his technique, we construct a smaller such example. We then develop an appropriate algebraic condition and apply it computationally to show that, for n ≤ 7, the conjecture does hold for ℝ, and that there are essentially only two possible counterexamples over ℂ. Examining these two patterns, we highlight the problem of determining whether or not either is in fact spectrally arbitrary over ℂ. A general method for making this determination for a pattern remains a major goal; we introduce an algebraic tool that may be helpful.