Contextual Integrity Up and Down the Data Food Chain

2019 ◽  
Vol 20 (1) ◽  
pp. 221-256 ◽  
Author(s):  
Helen Nissenbaum

Abstract According to the theory of contextual integrity (CI), privacy norms prescribe information flows with reference to five parameters — sender, recipient, subject, information type, and transmission principle. Because privacy is grasped contextually (e.g., health, education, civic life, etc.), the values of these parameters range over contextually meaningful ontologies — of information types (or topics) and actors (subjects, senders, and recipients), in contextually defined capacities. As an alternative to predominant approaches to privacy, which were ineffective against novel information practices enabled by IT, CI was able both to pinpoint sources of disruption and provide grounds for either accepting or rejecting them. Mounting challenges from a burgeoning array of networked, sensor-enabled devices (IoT) and data-ravenous machine learning systems, similar in form though magnified in scope, call for renewed attention to theory. This Article introduces the metaphor of a data (food) chain to capture the nature of these challenges. With motion up the chain, where data of higher order is inferred from lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater challenge comes from data primitives, such as digital impulses of mouse clicks, motion detectors, and bare GPS coordinates, because they appear to have no meaning. Absent a semantics, they escape CI’s privacy norms entirely.

2018 ◽  
Vol 12 ◽  
pp. 85-98
Author(s):  
Bojan Kostadinov ◽  
Mile Jovanov ◽  
Emil STANKOV

Data collection and machine learning are changing the world. Whether it is medicine, sports or education, companies and institutions are investing a lot of time and money in systems that gather, process and analyse data. Likewise, to improve competitiveness, a lot of countries are making changes to their educational policy by supporting STEM disciplines. Therefore, it’s important to put effort into using various data sources to help students succeed in STEM. In this paper, we present a platform that can analyse student’s activity on various contest and e-learning systems, combine and process the data, and then present it in various ways that are easy to understand. This in turn enables teachers and organizers to recognize talented and hardworking students, identify issues, and/or motivate students to practice and work on areas where they’re weaker.


Author(s):  
Intan Permata Sari And Indra Hartoyo

This study is aimed at (1) analyzing reading exercises based Bloom’s taxonomy for VIII grade in English on Sky textbook. (2) Found the distribution of the lower and higher order thinking skill in reading exercises. (3) To reason for level reading exercises. After analyzed the data, the result of the data analysis also infers that the six levels of Bloom’s taxonomy in reading exercises weren’t applied totally. The creating skill doesn’t have distribution in reading exercise, and the understanding – remembering level more dominant than another levels. The distribution of the higher order thinking level was lower than the lower order thinking level and the six levels are not appropriate with the proportion for each level of education based Bloom’s taxonomy, such as the distribution of the creating level in the reading exercise must be a concern because no question that belong to the creating level. It was concluded that reading exercises in English on Sky textbook cannot improve students' critical thinking skills for VIII grade.


2016 ◽  
Vol 1 (1) ◽  
pp. 32-39
Author(s):  
Tahira Akhtar ◽  
◽  
Aahsann Kazemi ◽  

Author(s):  
Tim Button ◽  
Sean Walsh

This chapter considers whether internal categoricity can be used to leverage any claims about mathematical truth. We begin by noting that internal categoricity allows us to introduce a truth-operator which gives an object-language expression to the supervaluationist semantics. In this way, the univocity discussed in previous chapters might seem to secure an object-language expression of determinacy of truth-value; but this hope falls short, because such truth-operators must be carefully distinguished from truth-predicates. To introduce these truth-predicates, we outline an internalist attitude towards model theory itself. We then use this to illuminate the cryptic conclusions of Putnam's justly-famous paper ‘Models and Reality’. We close this chapter by presenting Tarski’s famous result that truth for lower-order languages can be defined in higher-order languages.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


Author(s):  
J. K. Stringer ◽  
Sally A. Santen ◽  
Eun Lee ◽  
Meagan Rawls ◽  
Jean Bailey ◽  
...  

Abstract Background Analytic thinking skills are important to the development of physicians. Therefore, educators and licensing boards utilize multiple-choice questions (MCQs) to assess these knowledge and skills. MCQs are written under two assumptions: that they can be written as higher or lower order according to Bloom’s taxonomy, and students will perceive questions to be the same taxonomical level as intended. This study seeks to understand the students’ approach to questions by analyzing differences in students’ perception of the Bloom’s level of MCQs in relation to their knowledge and confidence. Methods A total of 137 students responded to practice endocrine MCQs. Participants indicated the answer to the question, their interpretation of it as higher or lower order, and the degree of confidence in their response to the question. Results Although there was no significant association between students’ average performance on the content and their question classification (higher or lower), individual students who were less confident in their answer were more than five times as likely (OR = 5.49) to identify a question as higher order than their more confident peers. Students who responded incorrectly to the MCQ were 4 times as likely to identify a question as higher order than their peers who responded correctly. Conclusions The results suggest that higher performing, more confident students rely on identifying patterns (even if the question was intended to be higher order). In contrast, less confident students engage in higher-order, analytic thinking even if the question is intended to be lower order. Better understanding of the processes through which students interpret MCQs will help us to better understand the development of clinical reasoning skills.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2514
Author(s):  
Tharindu Kaluarachchi ◽  
Andrew Reis ◽  
Suranga Nanayakkara

After Deep Learning (DL) regained popularity recently, the Artificial Intelligence (AI) or Machine Learning (ML) field is undergoing rapid growth concerning research and real-world application development. Deep Learning has generated complexities in algorithms, and researchers and users have raised concerns regarding the usability and adoptability of Deep Learning systems. These concerns, coupled with the increasing human-AI interactions, have created the emerging field that is Human-Centered Machine Learning (HCML). We present this review paper as an overview and analysis of existing work in HCML related to DL. Firstly, we collaborated with field domain experts to develop a working definition for HCML. Secondly, through a systematic literature review, we analyze and classify 162 publications that fall within HCML. Our classification is based on aspects including contribution type, application area, and focused human categories. Finally, we analyze the topology of the HCML landscape by identifying research gaps, highlighting conflicting interpretations, addressing current challenges, and presenting future HCML research opportunities.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


Sign in / Sign up

Export Citation Format

Share Document