SiMiSnoRNA: Collection of siRNA, miRNA, and snoRNA database for RNA interference / SiMiSnoRNA: RNA Interferansı için siRNA, miRNA ve snoRNA veritabanında depolanan siRNA, miRNA, and snoRNA koleksiyonları

2015 ◽  
Vol 40 (6) ◽  
Author(s):  
Umesh Kalathiya ◽  
Monikaben Padariya ◽  
Maciej Baginski ◽  
Chintankumar Padariya

AbstractObjective: The discovery of sequence specific gene silencing which occurs due to the presence of double- stranded RNAs has considerable impact on biology, revealing an unknown level of regulation of gene expression. This process is known as RNA interference (RNAi) or RNA silencing in which RNA molecules inhibit gene expression, typically by causing the destruction of specific mRNA molecule. Two types of small RNA molecules-small interfering RNA (siRNA) and microRNA (miRNA) are central to RNA interference. Therefore, SMethods: SResults: A flexible web-based search engine is developed to obtain fast access to specific small RNA sequence information.Conclusion: BLAST search analysis within S

2005 ◽  
Vol 390 (3) ◽  
Author(s):  
Junlong Zhang

RNAi (RNA interference) refers to the suppression of expression of a target gene (mainly at the post-transcriptional or translational level) induced by small (21–23 nucleotides) RNA molecules, including siRNA (small interfering RNA). Suppression of gene expression by RNAi represents an important part of the regulation of gene expression. Interestingly, recent advancements in RNAi research support the notion that RNAi can be regulated just as an ordinary gene. In this issue of the Biochemical Journal, Hong et al. report their finding that suppression of RNAi is triggered by a high dose of siRNA in mice, and the suppression of RNAi in mice is related to eri-1 (enhanced RNA interference). Eri-1 is an RNaseT enzyme initially found in Caenorhabditis elegans that can degrade double-stranded RNA with 3′ overhangs. The results presented by Hong et al. have the potential to be extended and contribute to our knowledge about the regulation of RNAi in mammals.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Hamid Hamzeiy ◽  
Rabia Suluyayla ◽  
Christoph Brinkrolf ◽  
Sebastian Jan Janowski ◽  
Ralf Hofestaedt ◽  
...  

AbstractMicroRNAs (miRNAs) are small RNA molecules which are known to take part in post-transcriptional regulation of gene expression. Here, VANESA, an existing platform for reconstructing, visualizing, and analysis of large biological networks, has been further expanded to include all experimentally validated human miRNAs available within miRBase, TarBase and miRTarBase. This is done by integrating a custom hybrid miRNA database to DAWIS-M.D., VANESA’s main data source, enabling the visualization and analysis of miRNAs within large biological pathways such as those found within the Kyoto Encyclopedia of Genes and Genomes (KEGG). Interestingly, 99.15 % of human KEGG pathways either contain genes which are targeted by miRNAs or harbor them. This is mainly due to the high number of interaction partners that each miRNA could have (e.g.: hsa-miR-335-5p targets 2544 genes and 71 miRNAs target


2020 ◽  
Vol 64 (6) ◽  
pp. 931-945 ◽  
Author(s):  
Fuyan Si ◽  
Xiaofeng Cao ◽  
Xianwei Song ◽  
Xian Deng

Abstract Precursor RNAs undergo extensive processing to become mature RNAs. RNA transcripts are subjected to 5′ capping, 3′-end processing, splicing, and modification; they also form dynamic secondary structures during co-transcriptional and post-transcriptional processing. Like coding RNAs, non-coding RNAs (ncRNAs) undergo extensive processing. For example, secondary small interfering RNA (siRNA) transcripts undergo RNA processing, followed by further cleavage to become mature siRNAs. Transcriptome studies have revealed roles for co-transcriptional and post-transcriptional RNA processing in the regulation of gene expression and the coordination of plant development and plant–environment interactions. In this review, we present the latest progress on RNA processing in gene expression and discuss phased siRNAs (phasiRNAs), a kind of germ cell-specific secondary small RNA (sRNA), focusing on their functions in plant development and environmental responses.


Open Medicine ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Anubrata Ghosal ◽  
Ahmad Kabir ◽  
Abul Mandal

AbstractRNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.


2010 ◽  
Vol 48 ◽  
pp. 165-185 ◽  
Author(s):  
Asli Silahtaroglu ◽  
Jan Stenvang

Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3′ UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 701
Author(s):  
Tatiana S. Golubeva ◽  
Viktoria A. Cherenko ◽  
Konstantin E. Orishchenko

Selective regulation of gene expression by means of RNA interference has revolutionized molecular biology. This approach is not only used in fundamental studies on the roles of particular genes in the functioning of various organisms, but also possesses practical applications. A variety of methods are being developed based on gene silencing using dsRNA—for protecting agricultural plants from various pathogens, controlling insect reproduction, and therapeutic techniques related to the oncological disease treatment. One of the main problems in this research area is the successful delivery of exogenous dsRNA into cells, as this can be greatly affected by the localization or origin of tumor. This overview is dedicated to describing the latest advances in the development of various transport agents for the delivery of dsRNA fragments for gene silencing, with an emphasis on cancer treatment.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2152
Author(s):  
Robin Loesch ◽  
Linda Chenane ◽  
Sabine Colnot

Chromatin remodelers are found highly mutated in cancer including hepatocellular carcinoma. These mutations frequently occur in ARID (AT-rich Interactive Domain) genes, encoding subunits of the ATP-dependent SWI/SNF remodelers. The increasingly prevalent complexity that surrounds the functions and specificities of the highly modular BAF (BG1/BRM-associated factors) and PBAF (polybromo-associated BAF) complexes, including ARID1A/B or ARID2, is baffling. The involvement of the SWI/SNF complexes in diverse tissues and processes, and especially in the regulation of gene expression, multiplies the specific outcomes of specific gene alterations. A better understanding of the molecular consequences of specific mutations impairing chromatin remodelers is needed. In this review, we summarize what we know about the tumor-modulating properties of ARID2 in hepatocellular carcinoma.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Hiroshi Kondo ◽  
Keiko Miyoshi ◽  
Shoji Sakiyama ◽  
Akira Tangoku ◽  
Takafumi Noma

Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated anin vitrosystem to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions,surfactant protein C(SPC), an ATII marker, was upregulated in both H12 and B7.Aquaporin 5(AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited,SPCandthyroid transcription factor-1(TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF),surfactant protein BandTTF-1expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.


2015 ◽  
Vol 112 (47) ◽  
pp. 14587-14592 ◽  
Author(s):  
Michael J. Spellberg ◽  
Michael T. Marr

Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


Sign in / Sign up

Export Citation Format

Share Document