scholarly journals Calumenin contributes to epithelial-mesenchymal transition and predicts poor survival in glioma

2021 ◽  
Vol 12 (1) ◽  
pp. 67-75
Author(s):  
Ying Yang ◽  
Jin Wang ◽  
Shihai Xu ◽  
Fei Shi ◽  
Aijun Shan

Abstract Background Calumenin (CALU) has been reported to be associated with invasiveness and metastasis in some malignancies. However, in glioma, the role of CALU remains unclear. Methods Clinical and transcriptome data of 998 glioma patients, including 301 from CGGA and 697 from TCGA dataset, were included. R language was used to perform statistical analyses. Results CALU expression was significantly upregulated in more malignant gliomas, including higher grade, IDH wildtype, mesenchymal, and classical subtype. Gene Ontology analysis revealed that CALU-correlated genes were mainly enriched in cell/biological adhesion, response to wounding, and extracellular matrix/structure organization, all of which were strongly correlated with the epithelial-mesenchymal transition (EMT) phenotype. GSEA further validated the profound involvement of CALU in EMT. Subsequent GSVA suggested that CALU was particularly correlated with three EMT signaling pathways, including TGFβ, PI3K/AKT, and hypoxia pathway. Furthermore, CALU played synergistically with EMT key markers, including N-cadherin, vimentin, snail, slug, and TWIST1. Survival and Cox regression analysis showed that higher CALU predicted worse survival, and the prognostic value was independent of WHO grade and age. Conclusions CALU was correlated with more malignant phenotypes in glioma. Moreover, CALU seemed to serve as a pro-EMT molecular target and could contribute to predict prognosis independently in glioma.

2020 ◽  
Author(s):  
Ying Yang ◽  
Jin Wang ◽  
Shihai Xu ◽  
Fei Shi ◽  
Aijun Shan

AbstractCalumenin (CALU) has been reported to be associated with invasiveness and metastasis in some malignancies. However, in glioma, the role of CALU remains unclear. In the current study, we aimed to unveil its role in glioma based on transcriptome level. Clinical and transcriptome data of 998 glioma patients, including 301 from CGGA mRNA microarray dataset and 697 from TCGA RNA sequencing dataset, were downloaded and analyzed. R language was used to perform statistical analyses and generate figures. In glioma, CALU expression seemed to be positively associated with WHO grade system, and was enriched in IDH wildtype, mesenchymal and classical subtype. Genes that tightly correlated with CALU were screened and annotated with Gene Ontology, and it turned out that, these genes were highly enriched in cell/biological adhesion, response to wounding, and extracellular matrix/structure organization, all of which were strongly correlated with the epithelial-mesenchymal transition (EMT) phenotype. Subsequent GSEA analysis further validated the profound involvement of CALU in EMT. To get further understanding of the association between EMT and CALU, GSVA analysis was performed to identify the EMT signaling pathways that CALU might involve. CALU expression was found to be positively correlated with TGFβ, PI3K/AKT, and hypoxia pathway. Furthermore, Pearson correlation indicated that CALU played synergistically with EMT key markers, including N-cadherin, vimentin, snail, slug and TWIST1, in both CGGA and TCGA dataset. Kaplan-Meier curves and Cox regression analyses showed that higher CALU predicted a worse survival for patients, and the prognostic value was independent of WHO grade and age. In conclusion, CALU was correlated with more malignant phenotypes in glioma. Moreover, CALU seemed to serve as a pro-EMT molecular target and could contribute to predict prognosis independently for glioma patients.


2021 ◽  
pp. 1-8
Author(s):  
Haifeng Xia ◽  
Fang Hu ◽  
Liangbin Pan ◽  
Chengcheng Xu ◽  
Haitao Huang ◽  
...  

BACKGROUND: EC (esophageal cancer) is a common cancer among people in the world. The molecular mechanism of FAM196B (family with sequence similarity 196 member B) in EC is still unclear. This article aimed to clarify the role of FAM196B in EC. METHODS: The expression of FAM196B in EC tissues was detected using qRT-PCR. The prognosis of FAM196B in EC patients was determined by log-rank kaplan-Meier survival analysis and Cox regression analysis. Furthermore, shRNA was used to knockdown the expression of FAM196B in EC cell lines. MTT, wound healing assays and western blot were used to determine the role of FAM196B in EC cells. RESULTS: In our research, we found that the expression of FAM196B was up-regulated in EC tissues. The increased expression of FAM196B was significantly correlated with differentiation, lymph node metastasis, stage, and poor survival. The proliferation and migration of EC cells were inhibited after FAM196B-shRNA transfection in vitro and vivo. The western blot result showed that FAM196B could regulate EMT. CONCLUSION: These results suggested that FAM196B severs as an oncogene and promotes cell proliferation and migration in EC. In addition, FAM196B may be a potential therapeutic target for EC patients.


Author(s):  
Bo Xiao ◽  
Liyan Liu ◽  
Zhuoyuan Chen ◽  
Aoyu Li ◽  
Pingxiao Wang ◽  
...  

Melanoma is the most common cancer of the skin, associated with a worse prognosis and distant metastasis. Epithelial–mesenchymal transition (EMT) is a reversible cellular biological process that plays significant roles in diverse tumor functions, and it is modulated by specific genes and transcription factors. The relevance of EMT-related lncRNAs in melanoma has not been determined. Therefore, RNA expression data and clinical features were collected from the TCGA database (N = 447). Melanoma samples were randomly assigned into the training (315) and testing sets (132). An EMT-related lncRNA signature was constructed via comprehensive analyses of lncRNA expression level and corresponding clinical data. The Kaplan-Meier analysis showed significant differences in overall survival in patients with melanoma in the low and high-risk groups in two sets. Receiver operating characteristic (ROC) curves were used to measure the performance of the model. Cox regression analysis indicated that the risk score was an independent prognostic factor in two sets. Besides, a nomogram was constructed based on the independent variables. Gene Set Enrichment Analysis (GSEA) was applied to evaluate the potential biological functions in the two risk groups. Furthermore, the melanoma microenvironment was evaluated using ESTIMATE and CIBERSORT algorithms in the risk groups. This study indicates that EMT-related lncRNAs can function as potential independent prognostic biomarkers for melanoma survival.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gongmin Zhu ◽  
Hongwei Xia ◽  
Qiulin Tang ◽  
Feng Bi

Abstract Background Tumor metastasis is one of the leading reasons of the dismal prognosis of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is closely associated with tumor metastasis including HCC. The purpose of this study is to construct and validate an EMT-related gene signature for predicting the prognosis of HCC patients. Methods Gene expression data of HCC patients was downloaded from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was performed to found the EMT-related gene sets which were obviously distinct between normal samples and paired HCC samples. Cox regression analysis was used to develop an EMT-related prognostic signature, and the performance of the signature was evaluated by Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves. A nomogram incorporating the independent predictors was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the hub genes in HCC cell lines, and the role of PDCD6 in the metastasis of HCC was determined by functional experiments. Results An EMT-related 5-gene signature (PDCD6, TCOF1, TRIM28, EZH2 and FAM83D) was constructed using univariate and multivariate Cox regression analysis. Based on the signature, the HCC patients were classified into high- and low-risk groups, and patients in high-risk group had a poor prognosis. Time-dependent ROC and Cox regression analyses suggested that the signature could predict HCC prognosis exactly and independently. The predictive capacity of the signature was also validated in two external cohorts. GSEA results showed that many cancer-related signaling pathways such as PI3K/Akt/mTOR pathway and TGF-β/SMAD pathway were enriched in high-risk group. The result of qRT-PCR revealed that PDCD6, TCOF1 and FAM83D were highly expressed in HCC cancer cells. Among them, PDCD6 were found to promote cell migration and invasion. Conclusion The EMT-related 5-gene signature can serve as a promising prognostic biomarker for HCC patients and may provide a novel mechanism of HCC metastasis.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Sheng Zheng ◽  
Yifeng Lin ◽  
Jiawei Sun ◽  
Ning Ding ◽  
...  

Abstract Background The epithelial-mesenchymal transition (EMT) plays a pivotal role in various physiological processes, such as embryonic development, tissue morphogenesis, and wound healing. EMT also plays an important role in cancer invasion, metastasis, and chemoresistance. Additionally, EMT is partially responsible for chemoresistance in colorectal cancer (CRC). The aim of this research is to develop an EMT-based prognostic signature in CRC. Methods RNA-seq and microarray data, together with clinical information, were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A total of 244 differentially expressed EMT-related genes (ERGs) were obtained by comparing the expression between normal and tumor tissues. An EMT-related signature of 11 genes was identified as crucially related to the overall survival (OS) of patients through univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and Cox regression analysis. Finally, we established a clinical nomogram to predict the survival possibility of CRC patients by integrating clinical characteristics and the EMT-related gene signature. Results Two hundred and forty-four differentially expressed ERGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that EMT-related signaling pathway genes were highly related to CRC. Kaplan-Meier analysis revealed that the 11-EMT signature could significantly distinguish high- and low-risk patients in both TCGA and GEO CRC cohorts. In addition, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusion We developed a novel EMT-related gene signature for the prognosis prediction of CRC patients, which could improve the individualized outcome prediction in CRC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ying Yang ◽  
Wen Lv ◽  
Shihai Xu ◽  
Fei Shi ◽  
Aijun Shan ◽  
...  

LIGHT, also termed TNFSF14, has been reported to play a vital role in different tumors. However, its role in glioma remains unknown. This study is aimed at unveiling the characterization of the transcriptional expression profiling of LIGHT in glioma. We selected 301 glioma patients with mRNA microarray data from the CGGA dataset and 697 glioma patients with RNAseq data from the TCGA dataset. Transcriptome data and clinical data of 998 samples were analyzed. Statistical analyses and figure generation were performed with R language. LIGHT expression showed a positive correlation with WHO grade of glioma. LIGHT was significantly increased in mesenchymal molecular subtype. Gene Ontology analysis demonstrated that LIGHT was profoundly involved in immune response. Moreover, LIGHT was found to be synergistic with various immune checkpoint members, especially HVEM, PD1/PD-L1 pathway, TIM3, and B7-H3. To get further understanding of LIGHT-related immune response, we put LIGHT together with seven immune signatures into GSVA and found that LIGHT was particularly correlated with HCK, LCK, and MHC-II in both datasets, suggesting a robust correlation between LIGHT and activities of macrophages, T-cells, and antigen-presenting cells (APCs). Finally, higher LIGHT indicated significantly shorter survival for glioma patients. Cox regression models revealed that LIGHT expression was an independent variable for predicting survival. In conclusion, LIGHT was upregulated in more malignant gliomas including glioblastoma, IDH wildtype, and mesenchymal subtype. LIGHT was mainly involved in the immune function of macrophages, T cells, and APCs and served as an independent prognosticator in glioma.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769502 ◽  
Author(s):  
Qiao-Li Lv ◽  
Shu-Hui Chen ◽  
Xue Zhang ◽  
Bao Sun ◽  
Lei Hu ◽  
...  

Increasing evidence indicates that long noncoding RNAs play important roles in development and progression of various cancers. Zinc finger antisense 1 is a novel long noncoding RNA whose clinical significance, biological function, and underlying mechanism are still undetermined in glioma. In this study, we reported that zinc finger antisense 1 expression was markedly upregulated in glioma and tightly correlated with clinical stage. Moreover, patients with high zinc finger antisense 1 expression had shorter survival. Multivariate Cox regression analysis provided a clue that, probably, zinc finger antisense 1 level could serve as an independent prognostic factor for glioma. Functionally, zinc finger antisense 1 acted as an oncogene in glioma because its knockdown could promote apoptosis and significantly inhibit cell proliferation, migration, and invasion. Furthermore, zinc finger antisense 1 silencing could result in cell cycle arrest at the G0/G1 phase and correspondingly decrease the percentage of S phase cells in both U87 and U251 cell lines. Moreover, it was found that silenced zinc finger antisense 1 could impair migration and invasion by inhibiting the epithelial–mesenchymal transition through reducing the expression of MMP2, MMP9, N-cadherin, Integrin β1, ZEB1, Twist, and Snail as well as increasing E-cadherin level in glioma. Taken together, our data identified that zinc finger antisense 1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danfeng Li ◽  
Xiaosheng Lin ◽  
Binlie Chen ◽  
Zhiyan Ma ◽  
Yongming Zeng ◽  
...  

Background: This study aimed to explore the biological functions and prognostic role of Epithelial-mesenchymal transition (Epithelial-mesenchymal transition)-related lncRNAs in colorectal cancer (CRC).Methods: The Cancer Genome Atlas database was applied to retrieve gene expression data and clinical information. An EMT-related lncRNA risk signature was constructed relying on univariate Cox regression, Least Absolute Shrinkage and Selector Operation (LASSO) and multivariate Cox regression analysis of the EMT-related lncRNA expression data and clinical information. Then, an individualized prognostic prediction model based on the nomogram was developed and the predictive accuracy and discriminative ability of the nomogram were determined by the receiver operating characteristic curve and calibration curve. Finally, a series of analyses, such as functional analysis and unsupervised cluster analysis, were conducted to explore the influence of independent lncRNAs on CRC.Results: A total of 581 patients were enrolled and an eleven-EMT-related lncRNA risk signature was identified relying on the comprehensive analysis of the EMT-related lncRNA expression data and clinical information in the training cohort. Then, risk scores were calculated to divide patients into high and low-risk groups, and the Kaplan-Meier curve analysis showed that low-risk patients tended to have better overall survival (OS). Multivariate Cox regression analysis indicated that the EMT-related lncRNA signature was significantly associated with prognosis. The results were subsequently confirmed in the validation dataset. Then, we constructed and validated a predictive nomogram for overall survival based on the clinical factors and risk signature. Functional characterization confirmed this signature could predict immune-related phenotype and was associated with immune cell infiltration (i.e., macrophages M0, M1, Tregs, CD4 memory resting cells, and neutrophils), tumor mutation burden (TMB).Conclusions: Our study highlighted the value of the 11-EMT-lncRNA signature as a predictor of prognosis and immunotherapeutic response in CRC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianguang Shi ◽  
Zishan Wang ◽  
Jing Guo ◽  
Yingqi Chen ◽  
Changyong Tong ◽  
...  

Epithelial-mesenchymal transition (EMT) process, which is regulated by genes of inducible factors and transcription factor family of signaling pathways, transforms epithelial cells into mesenchymal cells and is involved in tumor invasion and progression and increases tumor tolerance to clinical interventions. This study constructed a multigene marker for lung predicting the prognosis of lung adenocarcinoma (LUAD) patients by bioinformatic analysis based on EMT-related genes. Gene sets associated with EMT were downloaded from the EMT-gene database, and RNA-seq of LUAD and clinical information of patients were downloaded from the TCGA database. Differentially expressed genes were screened by difference analysis. Survival analysis was performed to identify genes associated with LUAD prognosis, and overlapping genes were taken for all the three. Prognosis-related genes were further determined by combining LASSO regression analysis for establishing a prediction signature, and the risk score equation for the prognostic model was established using multifactorial COX regression analysis to construct a survival prognostic model. The model accuracy was evaluated using subject working characteristic curves. According to the median value of risk score, samples were divided into a high-risk group and low-risk group to observe the correlation with the clinicopathological characteristics of patients. Combined with the results of one-way COX regression analysis, HGF, PTX3, and S100P were considered as independent predictors of LUAD prognosis. In lung cancer tissues, HGF and PTX3 expression was downregulated and S100P expression was upregulated. Kaplan-Meier, COX regression analysis showed that HGF, PTX3, and S100P were prognostic independent predictors of LUAD, and high expressions of all the three were all significantly associated with immune cell infiltration. The present study provided potential prognostic predictive biological markers for LUAD patients, and confirmed EMT as a key mechanism in LUAD progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yin Zhang ◽  
Chun-Yuan Li ◽  
Wei Ge ◽  
Yi Xiao

Purpose. In most cases, the carcinogenesis of colorectal cancer (CRC) follows the normal-adenoma-carcinoma (N-A-C) sequence. In this study, we aimed to identify the key proteins in the N-A-C sequence. Methods. Differentially expressed proteins (DEPs) in normal, adenoma, and carcinoma tissues were identified using the Tandem Mass Tag- (TMT-) based quantitative proteomics approach. The landscape of proteomic variation in the N-A-C sequence was explored using gene set enrichment analysis (GSEA) and Proteomaps. Key proteins in the N-A-C sequence were identified, verified, and validated based on our proteomic data, external proteomic data, and external transcriptomic data in the ProteomeXchange, CPTAC, GEO, and TCGA databases. The prognostic value of the key proteins in our database was evaluated by univariate and multivariate Cox regression analysis. The effects of the key proteins on adenoma organoids and colorectal cancer cells were explored in functional studies. Results. Based on our proteomic profiles, we identified 1,294 DEPs between the carcinoma (CG) and normal (NG) groups, 919 DEPs between the adenoma group (AG) and NG, and 1,030 DEPs between the CG and AG. Ribosome- and spliceosome-related pathways were mainly enriched in the N-A process. Extracellular matrix- and epithelial-mesenchymal transition- (EMT-) related pathways were mainly enriched in the A-C process. RRP12 and SERPINH1 were identified, verified, and validated as candidate key proteins in the N-A and A-C processes, respectively. Furthermore, RRP12 and SERPINH1 knockdown impeded the viability and proliferation of adenoma organoids. SERPINH1 was validated as a risk factor for disease-free survival (DFS) based on the TCGA and our database, whereas RRP12 did not show prognostic value. SERPINH1 knockdown was accompanied by EMT-related protein variation, increased apoptosis, and reduced proliferation, invasion, and migration of CRC cells in vitro. Conclusions. RRP12 and SERPINH1 may play an important role in the N-A and A-C processes, respectively. Furthermore, SERPINH1 showed favorable prognostic value for DFS in CRC patients. We speculate that SERPINH1 might promote not only the A-C process but also the development of CRC.


Sign in / Sign up

Export Citation Format

Share Document