On the Behavior of Short-lived Cosmic Ray Produced Nuclides in the Lower Atmosphere

1969 ◽  
Vol 24 (12) ◽  
pp. 1897-1903
Author(s):  
Walter Roedel

AbstractSome aspects of short-lived cosmic ray produced nuclides in the lower atmosphere, especially of Na24 , and their qualities as tracers for atmospheric motion are studied. The Na24 production rate has been estimated. The distribution of this nuclide as a function of altitude in the lower atmosphere has been described by a steady state eddy diffusion model. Measurements of Na24 in ground-level air have been carried out. The measured activities varied from 0.07 ·10-3 to 0.28·10-3 dpm/m3 . These figures are in good accordance with the calculated values for reasonable diffusion parameters. Calculations suggest that CRP-nuclides with life-times in the order of a day are useful as tracers for atmospheric motions in the range of eddy diffusion coefficients of about 5·104 to several 106 cm2 sec-1 , and for altitudes below four of five kilometers. Furthermore some relations between the specific radioactivity of rainwater and the specific activity of cloud-level air, with special respect to short-living CRP-nuclides are found. The evaluation of some measurements of Na24 activity in rain water shows good consistency between real atmospheric conditions and calculated values.

2020 ◽  
Vol 12 (4) ◽  
pp. 626 ◽  
Author(s):  
Jie Wang ◽  
Wenqing Liu ◽  
Cheng Liu ◽  
Tianshu Zhang ◽  
Jianguo Liu ◽  
...  

A homemade portable no-blind zone laser detection and ranging (lidar) system was designed to map the three-dimensional (3D) distribution of aerosols based on a dual-field-of-view (FOV) receiver system. This innovative lidar prototype has a space resolution of 7.5 m and a time resolution of 30 s. A blind zone of zero meters, and a transition zone of approximately 60 m were realized with careful optical alignments, and were rather meaningful to the lower atmosphere observation. With a scanning platform, the lidar system was used to locate the industrial pollution sources at ground level. The primary parameters of the transmitter, receivers, and detectors are described in this paper. Acquiring a whole return signal of this lidar system represents the key step to the retrieval of aerosol distribution with applying a linear joining method to the two FOV signals. The vertical profiles of aerosols were retrieved by the traditional Fernald method and verified by real-time observations. To effectively and reliably retrieve the horizontal distributions of aerosols, a composition of the Fernald method and the slope method were applied. In this way, a priori assumptions of even atmospheric conditions and the already-known reference point in the lidar equation were avoided. No-blind-zone vertical in-situ observation of aerosol illustrated a detailed evolution from almost 0 m to higher altitudes. No-blind-zone detection provided tiny structures of pollution distribution in lower atmosphere, which is closely related to human health. Horizontal field scanning experiments were also conducted in the Shandong Province. The results showed a high accuracy of aerosol mass movement by this lidar system. An effective quantitative way to locate pollution sources distribution was paved with the portable lidar system after validation by the mass concentration of suspended particulate matter from a ground air quality station.


2016 ◽  
Vol 16 (12) ◽  
pp. 8009-8021 ◽  
Author(s):  
Astrid Lampert ◽  
Falk Pätzold ◽  
Maria Antonia Jiménez ◽  
Lennart Lobitz ◽  
Sabrina Martin ◽  
...  

Abstract. Observations of turbulence are analysed for the afternoon and evening transition (AET) during the Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) experimental field campaign that took place in Lannemezan (foothills of the Pyrenees) in summer 2011. The case of 2 July is further studied because the turbulence properties of the lower atmosphere (up to 300 m above ground level) were sampled with the Meteorological Mini Aerial Vehicle (M2AV) from turbulently mixed to stably stratified atmospheric conditions. Additionally, data from radiosoundings, 60 m tower and UHF wind profiler were taken together with the model results from a high-resolution mesoscale simulation of this case. Weak large-scale winds and clear-sky conditions were present on the studied AET case favouring the development of slope winds and mountain–plain circulations. It is found that during the AET the anisotropy of the turbulent eddies increases as the vertical motions are damped due to the stably stratified conditions. This effect is enhanced by the formation of a low-level jet after sunset. Finally, the comparison of the anisotropy ratio computed from the different sources of observations allow us to determine the most relevant scales of the motion during the AET in such a complex terrain region.


1976 ◽  
Vol 36 (01) ◽  
pp. 200-207 ◽  
Author(s):  
Donald G. Corby ◽  
Thomas F. Zuck

SummaryPer cent aggregation, release and content of adenine nucleotides, and specific radioactivity were evaluated in citrated platelet-rich plasma (PRP) prepared from paired samples of maternal and cord blood. Platelets of newborn infants aggregated normally in response to high dose ADP (20 μM), strong collagen suspensions, and thrombin; however, when compared with PRP from the mothers or from normal adults, per cent aggregation in response to lower concentrations of ADP (2 μM), weak collagen, and part particularly epinephrine was markedly reduced. Nucleotide release after stimulation of the newborns’ PRP with the latter two inducers was also impaired. ATP and ADP content of the newborns’ platelets was also significantly less than that of their mothers or of normal adults, but specific activity was normal. The data suggest that the impairment of ADP release in the platelets of newborn infants is due to decreased sensitivity to external stimuli. Since metabolic ATP is necessary for the platelet release reaction, it is postulated that the platelet dysfunction results from a lack of metabolic ATP.


2011 ◽  
Vol 20 (03) ◽  
pp. 299-317
Author(s):  
E. STRAZZERI ◽  
O. CATALANO ◽  
B. SBARUFATTI

In the context of detection of Ultra High Energy Cosmic Ray (UHECR) showers from space the details of fluorescence light production and transmission in the atmosphere are given. An analytical model of the fluorescence yield, in dependence on nitrogen molecular parameters and the atmospheric conditions, is presented. Seasonal and geographical variations of the total fluorescence photon yield between 300 nm and 400 nm in air excited by 0.85 MeV electrons are shown as a function of the altitude, using different atmospheric models. In the frame of a satellite-based UHECR experiment the fluorescence yield has been corrected by the overall atmospheric transmission which takes into account, in the simplest approximation, the wavelength-dependent scattering and absorption of the fluorescence light from air molecules, from stratospheric ozone, and from aerosol. The effect of the atmospheric attenuation on the fluorescence yield is shown as a function of the altitude of the emission point of light.


1967 ◽  
Vol 45 (4) ◽  
pp. 597-607 ◽  
Author(s):  
A. Naimark ◽  
D. Klass

The incorporation of palmitate-1-14C into various lipid fractions was studied in rat lung in vitro. Most of the radioactivity was found in phospholipid, although in terms of decreasing specific activity the lipids were ranked: free fatty acid (FFA), glycerides, phospholipid. In addition to the usual glycerophosphatides, rat lung contained a substance with some of the chromatographic characteristics of phosphatidyl dimethylethanolamine. In terms of decreasing specific activities the phospholipids were ranked: phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl dimethylethanolamine, phosphatidyl serine plus phosphatidyl inositol, sphingomyelin plus lysophosphatidyl choline. Inhibition of oxidative energy production by hypoxia, cyanide, or low temperature markedly depressed the esterification of palmitate-1-14C. Less marked depression was observed in the absence of exogenous glucose. In all cases the decreased incorporation was associated with an increase in the total and specific radioactivity in tissue FFA. It is concluded that energy-independent exchange reactions are probably of little importance in the incorporation of FFA into esterified lipids of lung tissue. Under conditions of metabolic inhibition the penetration of labelled FFA into the tissue FFA pool does not appear to limit esterification.


1979 ◽  
Vol 34 (12) ◽  
pp. 1237-1242 ◽  
Author(s):  
Wolfram Köller ◽  
Helmut Kindl

Abstract Malate synthase is synthesized de novo in the very early phase of germination. Its molecular and immunological properties do not differ from those of malate synthase from fully developed cotyledons. Radioactive leucine was administered to dry seeds of cucumber, and its incorporation into proteins of cotyledons was examined after 2 days of germination. The specific radioactivity of malate synthase, purified by immunoprecipitation and electrophoresis on polyacrylamide gel, was only 1/20 the average value of the total albumin fraction. The minimal incorporation documented by the comparatively low specific activity of isolated malate synthase is discussed in relation to the large pool of malate synthase already present in dry seeds.


2019 ◽  
Vol 5 (3) ◽  
pp. 68-74
Author(s):  
Евгений Маурчев ◽  
Evgeniy Maurchev ◽  
Юрий Балабин ◽  
Yuriy Balabin ◽  
Алексей Германенко ◽  
...  

This paper explores the applied use of the RUSCOSMICS software package [http://ruscosmics.ru] designed to simulate propagation of primary cosmic ray (CR) particles through Earth’s atmosphere and collect information about characteristics of their secondary component. We report the results obtained for proton fluxes with energy distributions corresponding to the differential spectra of galactic CR (GCR) and solar CR (SCR) during ground level enhancement (GLE) events GLE65 and GLE67. We examine features of the geometry of Earth’s atmosphere, parametrization methods, and describe a primary particle generator. The typical energy spectra of electrons obtained both for GCR and for GLE65 provide information that allows us to quantitatively estimate the SCR contribution to the enhancement of secondary CR fluxes. We also present altitude dependences of ionization rate for GCR and both the GLE events for several geomagnetic cutoff rigidity values. The conclusion summarizes and discusses the prospects for future research.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 429-435
Author(s):  
E Boven ◽  
T Lindmo ◽  
JB Mitchell ◽  
PA Jr Bunn

The radiolabeled anti-T cell antibody T101 can be used for specific tumor localization, but unlabeled T101 produces limited cytotoxicity in patients. We thus studied the in vitro cytotoxic effects of T101 labeled with 125I, a radionuclide known for its short-range, high- linear-energy electrons. We showed that 125I-T101 could be readily prepared at high specific activity with high immunoreactivity. Human malignant T cell lines HUT 102, MOLT-4, and HUT 78 were found to differ in the number of T65 determinants (the antigen recognized by T101) and the sensitivity to external x-ray radiation, which were of significance for the cytotoxicity of 125I-T101 in vitro. The cytotoxic effects of 125I-T101 were also found to be dose dependent and increased with exposure time under frozen conditions. As controls, unlabeled T101 had no cytotoxic effect, while free Na 125I or the 125I-labeled irrelevant antibody 9.2.27 exerted minor cytotoxicity. In HUT 102 and MOLT-4, more than 3 logs' cell killing was achieved within four weeks. Because considerable cytotoxicity was demonstrated in vitro by 125I-T101 on T65- positive malignant cells, and because low-dose 111In-T101 can be used successfully for tumor localization, future trials using 125I-T101 at high specific radioactivity may improve therapeutic results in patients with T65-positive malignancies.


2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Patrignani ◽  
Tyson E. Ochsner ◽  
Benjamin Montag ◽  
Steven Bellinger

During the past decade, cosmic-ray neutron sensing technology has enabled researchers to reveal soil moisture spatial patterns and to estimate landscape-average soil moisture for hydrological and agricultural applications. However, reliance on rare materials such as helium-3 increases the cost of cosmic-ray neutron probes (CRNPs) and limits the adoption of this unique technology beyond the realm of academic research. In this study, we evaluated a novel lower cost CRNP based on moderated ultra-thin lithium-6 foil (Li foil system) technology against a commercially-available CRNP based on BF3 (boron trifluoride, BF-3 system). The study was conducted in a cropped field located in the Konza Prairie Biological Station near Manhattan, Kansas, USA (325 m a.s.l.) from 10 April 2020 to 18 June 2020. During this period the mean atmospheric pressure was 977 kPa, the mean air relative humidity was 70%, and the average volumetric soil water content was 0.277 m3 m−3. Raw fast neutron counts were corrected for atmospheric pressure, atmospheric water vapor, and incoming neutron flux. Calibration of the CRNPs was conducted using four intensive field surveys (n > 120), in combination with continuous observations from an existing array of in situ soil moisture sensors. The time series of uncorrected neutron counts of the Li foil system was highly correlated (r2 = 0.91) to that of the BF-3 system. The Li foil system had an average of 2,250 corrected neutron counts per hour with an uncertainty of 2.25%, values that are specific to the instrument size, detector configuration, and atmospheric conditions. The estimated volumetric water content from the Li foil system had a mean absolute difference of 0.022 m3 m−3 compared to the value from the array of in situ sensors. The new Li foil detector offers a promising lower cost alternative to existing cosmic-ray neutron detection devices used for hectometer-scale soil moisture monitoring.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


Sign in / Sign up

Export Citation Format

Share Document