Neue Arsenide mit ThCr2Si2- oder einer damit verwandten Struktur: Die Verbindungen ARh2As2 (A: Eu, Sr, Ba) und BaZn2As2 / New Arsenides with ThCr2Si2-type or Related Structures: The Compounds ARh2As2 (A: Eu, Sr, Ba) and BaZn2As2

2007 ◽  
Vol 62 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Andrea Hellmann ◽  
Anke Löhken ◽  
Andreas Wurth ◽  
Albrecht Mewis

Four new arsenides of rhodium and zinc were prepared by heating mixtures of the elements at high temperatures (1000 - 1200 °C) and investigated by single crystal X-ray methods. EuRh2As2 (a = 4.067(1), c = 11.319(2) Å ) and BaRh2As2 (a = 4.053(1), c = 12.770(3) Å ) crystallize with the well-known ThCr2Si2-type (I4/mmm; Z = 2). Due to the rigid layers of RhAs4 tetrahedra, and to the atomic size of europium and barium, the As-As distances between the layers with values of 2.97 and 3.66 Å, respectively, are very long. SrRh2As2 is polymorphic and undergoes two phase transitions at about 190 and 282 °C. Main features of the three crystal structures are also layers of RhAs4 tetrahedra. At room temperature α-SrRh2As2 (a = 5.676(1), b = 6.178(2), c = 11.052(2) Å ) probably crystallizes with the BaNi2Si2-type (Cmcm; Z = 4), whereas β -SrRh2As2 (a = 5.760(3), b = 6.067(4), c = 11.264(5) A° , Fmmm, Z = 4) forms a new orthorhombically distorted variant of the ThCr2Si2-type. Single crystals grown in a flux of lead and quenched at high temperature show that the γ -phase (a = 4.112(1), c = 11.431(6) Å ) crystallizes with the ThCr2Si2-type. The same is true for the high temperature modification of BaZn2As2 (β -phase; a = 4.120(1), c = 13.578(1) Å ), whereas the already known α-BaZn2As2 forms the α-BaCu2S2-type (Pnma; Z = 4) consisting of a 3D-network of edge- and vertex-sharing ZnAs4 tetrahedra with Ba atoms in the voids of this network.

1988 ◽  
Vol 133 ◽  
Author(s):  
K. S. Kumar ◽  
S. K. Mannan

ABSTRACTThe mechanical alloying behavior of elemental powders in the Nb-Si, Ta-Si, and Nb-Ta-Si systems was examined via X-ray diffraction. The line compounds NbSi2 and TaSi2 form as crystalline compounds rather than amorphous products, but Nb5Si3 and Ta5Si3, although chemically analogous, respond very differently to mechanical milling. The Ta5Si3 composition goes directly from elemental powders to an amorphous product, whereas Nb5Si3 forms as a crystalline compound. The Nb5Si3 compound consists of both the tetragonal room-temperature α phase (c/a = 1.8) and the tetragonal high-temperature β phase (c/a = 0.5). Substituting increasing amounts of Ta for Nb in Nb5Si3 initially stabilizes the α-Nb5Si3 structure preferentially, and subsequently inhibits the formation of a crystalline compound.


2001 ◽  
Vol 674 ◽  
Author(s):  
Jian Zhou ◽  
Ralph Skomski ◽  
David J. Sellmyer ◽  
Wei Tang ◽  
George C. Hadjipanayis

ABSTRACTRecently, Ti-substituted Sm-Co permanent magnets have attracted renewed attention due to their interesting high-temperature coercivity. Our presentation deals with the effect of iron substitutions on the magnetic properties of the materials. X-ray diffraction shows that the investigated Sm(Co,Fe,Cu,Ti)z materials (z = 7.0 - 7.6) are two-phase magnets, consisting of 1:5 and 2:17 regions. The iron content affects both the coercivity and the magnetization. Depending on composition and heat treatment, some samples show a positive temperature coefficient of the coercivity in the temperature range from 22 °C to 550 °C. Moderate amounts of iron enhance the room-temperature coercivity. For example, the room-temperature coercivity of Sm(Co6.0Fe0.4Cu0.6Ti0.3) is 9.6 kOe, as compared to 7.6 kOe for Sm(Co6.4Cu0.6Ti0.3). At high temperatures, the addition of Fe has a deteriorating effect on the coercivity, which is as high as 10.0 kOe at 500 °C for Sm(Co6.4Cu0.6Ti0.3). The room-temperature magnetization increases on iron substitution, from 73 emu/g for Sm(Co6.4Cu0.6Ti0.3) to 78 emu/g for Sm(Co6.0Fe0.4Cu0.6Ti0.3). The observed temperature dependence is ascribed to the preferential dumbbell-site occupancy of the Fe atoms.


1977 ◽  
Vol 32 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Bernt Krebs ◽  
Jürgen Mandt

The room temperature modification of Ag8SiS6 is orthorhombic, space group Pna21, with α = 15.024, b = 7.428, c = 10.533 Å, Z = 4. A complete single crystal X-ray structure analysis shows the structure to contain tetrahedral SiS4(4-) units (Si-S 2.094(12) ... 2.130(12) Å) besides isolated sulfide groups coordinated by Ag; the compound may thus be formulated as Ag8(SiS4)(S)2. The coordination of the Ag atoms by sulfur is distorted tetrahedral (Ag-S 2.557...2.757 A), approximately trigonal planar (Ag-S 2.386...2.775 A, with one additional weakly bonded axial S at 2.991 ... 3.330 Å), or linear (Ag-S 2.414... 2.443 Å). Within the (ordered) Ag sublattice the temperature factors are significantly higher than for Si and S, indicating a certain mobility of the Ag atoms. The arrangement of the thiosilicate -sulfide part of the structure is pseudocubic face-centered, showing the close structural relationship to the disordered cubic high temperature modification of Ag8GeTe6.


2000 ◽  
Vol 56 (3) ◽  
pp. 335-348 ◽  
Author(s):  
S. M. Haile ◽  
B. J. Wuensch

Hydrothermally grown crystals of α-K3NdSi6O15·2H2O, potassium neodymium silicate, have been studied by single-crystal X-ray methods. The compound crystallizes in space group Pbam, contains four formula units per unit cell and has lattice constants a = 16.008 (2), b = 15.004 (2) and c = 7.2794 (7) Å, giving a calculated density of 2.683 Mg m−3. Refinement was carried out with 2161 independent structure factors to a residual, R(F), of 0.0528 [wR(F 2) = 0.1562] using anisotropic temperature factors for all atoms other than those associated with water molecules. The structure is based on highly corrugated (Si2O5 2−)∞ layers which can be generated by the condensation of xonotlite-like ribbons, which can, in turn, be generated by the condensation of wollastonite-like chains. The silicate layers are connected by Nd octahedra to form a three-dimensional framework. Potassium ions and water molecules are located in interstitial sites within this framework, in particular, within channels that extend along [001]. Aging of as-grown crystals at room temperature for periods of six months or more results in an ordering phenomenon that causes the length of the c axis to double. In addition, two phase transitions were found to occur upon heating. The high-temperature transformations, investigated by differential scanning calorimetry, thermal gravimetric analysis and high-temperature X-ray diffraction, are reversible, suggesting displacive transformations in which the layers remain intact. Conductivity measurements along all three crystallographic axes showed the conductivity to be greatest along [001] and further suggest that the channels present in the room-temperature structure are preserved at high temperatures so as to serve as pathways for easy ion transport. Ion-exchange experiments revealed that silver can readily be incorporated into the structure.


1986 ◽  
Vol 41 (11) ◽  
pp. 1319-1324 ◽  
Author(s):  
H. Endres ◽  
H. J. Keller ◽  
R. Swietlik ◽  
D. Schweitzer ◽  
K. Angermund ◽  
...  

The structure of single crystals of the organic metals α- and β-(BEDT-TTF)2I3* was determined at 100 K, well below the phase transitions indicated by resistivity and thermopower measurements as well as by differential thermal analysis. In the α-phase no unusual change of the room temperature unit cell but a slight variation in the triiodide network and especially a more pronounced dimerization in one of the two donor stacks have been found. The β-phase develops a superstructure with a unit cell volume three times as large as that at room temperature and with pronounced distortions of the I3--ions.


2002 ◽  
Vol 17 (5) ◽  
pp. 1085-1091 ◽  
Author(s):  
W. Z. Zhu ◽  
M. Yan ◽  
A. L. Kholkin ◽  
P. Q. Mantas ◽  
J. L. Baptista

The morphotropic phase boundary (MPB) composition that is characterized by the coexistence of rhombohedral and tetragonal phases in the Pb(Zn1/3Nb2/3)O3–BaTiO3– PbTiO3 system was modified by W-doping at the B site of a perovskite structural block. To maintain the electrical neutrality, creation of A-site vacancies was intentionally introduced in the formulation of the examined compositions. Incorporation of W ions was revealed to stabilize the tetragonal phase against the rhombohedral one, shifting the MPB toward the PZN-rich end at room temperature. High-temperature x-ray diffraction examination in combination with dielectric measurements discloses two successive phase transitions as a sample is cooled from high temperature, namely, paraelectric cubic to ferroelectric rhombohedral followed by ferroelectric rhombohedral to ferroelectric tetragonal. W addition appears to suppress the first transition while promoting the second one.


2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


1964 ◽  
Vol 8 ◽  
pp. 78-85 ◽  
Author(s):  
P. K. Gantzel ◽  
S. Langer ◽  
N. L. Baldwin ◽  
F. L. Kester

AbstractThermal analyses of samples of thorium dicarbide in equilibrium with graphite show arrests which indicate phase transitions at 1427 ± 21°C arid 1481 ± 28°C. These thermal effects have been observed on heating and cooling both in standard thermal analysis and in differential thermal analysis using graphite as a reference material. The microstructure of thorium dicarbide samples shows the characteristic “herringbone” pattern of a material which has undergone a martensitic-type transition.A high-temperature X-ray investigation has revealed that the observed thermal arrests correspond to erystallographic transformations. The monodinic modification found at room temperature is stable to 1427°C, at which temperature a tetragonal modification with a0 = 4.235 ± 0.002Å and c0 = 5.408 ± 0.002Å is formed. At 1481°C, the tetragonal is transformed to cubic with a0 = 5.809 ± 0.002 Å. The best agreement between observed and calculated intensities has been obtained with C-C units of 1.5-Å assumed bond length in space groups P42/mmc and Pa3 for the tetragonal and cubic modifications, respectively.


2008 ◽  
Vol 52 ◽  
pp. 103-108 ◽  
Author(s):  
Sidananda Sarma ◽  
A. Srinivasan

Polycrystalline ingots of Co70–xNixGa30 (20 ≤ x ≤ 26) ferromagnetic shape memory alloy (FSMA) were prepared by arc melting elemental powders followed by homogenization at 1230 °C for 24 hrs and quenching in liquid nitrogen. Room temperature X-Ray diffraction (XRD) patterns of as-quenched samples exhibited single-phase tetragonal structure for alloy compositions with x = 21 to 26, and a two-phase structure (cubic A2-phase along with weak tetragonal phase) for the alloy with x = 20. Rietveld refinement was performed on the X-ray diffraction patterns to obtain the refined structural parameters. Differential Scanning Calorimeter (DSC) curves recorded from 30 °C to 250 °C revealed martensite-austenite and austenite-martensite transformations in all alloys except the alloy with composition x = 20. Low temperature ac magnetic susceptibility measurements confirmed the existence of martensitic transformations in the alloy with x = 20. The structural transformation temperatures show a linear variation with e/a ratio. All the alloys were ferromagnetic at room temperature. Curie temperature was determined using a high temperature ac magnetic susceptibility measurement set-up.


Sign in / Sign up

Export Citation Format

Share Document