Synthesis of 2′-/3′-O-Acylated Adenine Nucleotide Analogs and Their Interactions in Photophosphorylation

1983 ◽  
Vol 38 (1-2) ◽  
pp. 49-59 ◽  
Author(s):  
G. Onur ◽  
G. Schäfer ◽  
H. Strotmann

By mono esterification of 3′(2′)-hydroxyl residues of adenine nucleotides with various carboxylic acids a series of nucleotide analogs is available including fluorescent and photoaffinity labels. Their chemical synthesis is described. The equilibrium between 2′ and 3′ esters is determined by NMR spectroscopy, stability of the esters and their tendency of acyl migration is discussed. The interaction of the ADP derivatives with the chloroplast ATP synthesizing system is investigated. Actually, the analogs are typical energy transfer inhibitors, strongly inhibiting photophosphorylation and concomitant coupled electron transport (ci50 values ranging from 0.3 to 85 hm). On the basis of inhibitory activities of analogs bearing varying 3′-(2′)-substituents, structure-activity relationships are discussed. The inhibitory properties of the employed ADP analogs are based on their specific interaction with the catalytic ADP binding site of CF, and their extremely slow phosphorylation on the enzyme (rate 0.25% or less compared to ADP phosphorylation). Inhibition is competitive to ADP but non-competitive with regard to Pi. It is specific for the ADP derivatives, whereas the corresponding ATP analogs are only weak inhibitors in phosphorylation and the AMP derivatives are completely inactive. In light-triggered ATP hydrolysis, however, the ATP analogs exhibit an even stronger competitive inhibition than the ADP derivatives. The results suggest that a conformational change of ATPase takes place when the chloroplasts are transferred from energized to de-energized conditions which greatly affects the properties of the active site with respect to nucleotide binding.

2009 ◽  
Vol 296 (4) ◽  
pp. E647-E653 ◽  
Author(s):  
Jingsong Cao ◽  
Weiqun Shen ◽  
Zhijie Chang ◽  
Yuguang Shi

Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1) catalyzes acylation of lysocardiolipin back to cardiolipin, an important step in cardiolipin remodeling. The present study reports the catalytic properties of ALCAT1 in vitro and its regulation by thyroid hormone status in mouse liver and heart. Recombinant ALCAT1 expressed in Sf9 cells preferred basic pH conditions and did not require divalent cations or integrity of the subcellular membrane for its enzymatic activity. Recombinant ALCAT1 was potently inhibited by ADP and ATP, but not by adenosine nucleotide analogs or other nucleotides, such as UTP and GTP, suggesting that ALCAT1 does not require ATP hydrolysis for its enzyme activity. In addition to cardiolipin, ALCAT1 also catalyzed acylation of other members of the polyglycerophospholipid family, including phosphatidylglycerol, a precursor for cardiolipin synthesis, and bis(monoacylglycero)phosphate, a structural isomer of lysophosphatidylglycerol and a metabolic intermediate of cardiolipin. These findings suggest that ALCAT1 plays a role in the remodeling of other polyglycerophospholipids. In support of a regulatory role of ALCAT1 in cardiolipin remodeling in response to oxidative stress, ALCAT1 expression in liver and heart was significantly downregulated in mice with hypothyroidism and upregulated in mice treated with thyroid hormone, which is known to stimulate mitochondrial activity, oxidative stress, and cardiolipin remodeling.


1980 ◽  
Vol 192 (3) ◽  
pp. 821-828 ◽  
Author(s):  
David D. Tyler

1. The distribution of Pi between mitochondria and suspending medium during uncoupler-stimulated hydrolysis of ATP by rat liver mitochondria [Tyler (1969) Biochem. J.111, 665–678] has been reinvestigated, by using either mersalyl or N-ethylmaleimide as inhibitors of Pi transport and either buffered sucrose/EDTA or LiCl/EGTA solutions as suspending medium. More than 75% of the total Pi liberated was retained in mitochondria treated with either inhibitor at all ATP concentrations tested (0.2–2.5mm). With low ATP concentrations and mersalyl-treated mitochondria incubated in sucrose/EDTA, virtually all the Pi liberated was retained in the mitochondria. 2. Larger amounts of Pi appeared in the suspending medium during ATPase activity, despite the presence of N-ethylmaleimide, when LiCl/EGTA was used as suspending medium compared with sucrose/EDTA. Two sources of this Pi were identified: (a) a slow efflux of Pi from mitochondria to suspending medium despite the presence of N-ethylmaleimide; (b) a slow ATPase activity insensitive to carboxyatractyloside, which was stimulated by added Mg2+, partially inhibited by oligomycin or efrapeptin and strongly inhibited by EDTA. 3. It is concluded that liver mitochondria preparations contain two distinct forms of ATPase activity. The major activity is associated with coupled mitochondria of controlled permeability to adenine nucleotides and Pi and is stimulated strongly by uncoupling agents. The minor activity is associated with mitochondria freely permeable to adenine nucleotides and Pi, is unaffected by uncoupling agents and is activated by endogenous or added Mg2+. 4. When mitochondria treated with mersalyl were incubated in buffered sucrose solution, almost all the Pi liberated was recovered in the suspending medium, unless inhibitors of Pi-induced large-amplitude swelling such as EDTA, EGTA, antimycin, rotenone, nupercaine or Mg2+ were added. Thus the loss of the specific permeability properties of the mitochondrial inner membrane associated with large-amplitude swelling also influences the extent of Pi retention during ATPase activity. 5. The results confirm the previous conclusion (Tyler, 1969) that the Pi transporter provides the sole pathway for Pi efflux during uncoupler-stimulated ATP hydrolysis by mitochondria. It is concluded that more recent hypotheses concerning the influence of Mg2+ on mersalyl inhibition of the Pi transporter [Siliprandi, Toninello, Zoccaroto & Bindoli (1975) FEBS Lett. 51, 15–17] and a postulated role of the adenine nucleotide exchange carrier in Pi efflux [Reynafarje & Lehninger (1978) Proc. Natl. Acad. Sci. U.S.A.75, 4788–4792] are erroneous and should be discarded.


1980 ◽  
Vol 43 (02) ◽  
pp. 099-103 ◽  
Author(s):  
J M Whaun ◽  
P Lievaart ◽  

SummaryBlood from normal full term infants, mothers and normal adults was collected in citrate. Citrated platelet-rich plasma was prelabelled with 3H-adenine and reacted with release inducers, collagen and adrenaline. Adenine nucleotide metabolism, total adenine nucleotide levels and changes in sizes of these pools were determined in platelets from these three groups of subjects.At rest, the platelet of the newborn infant, compared to that of the mother and normal adult, possessed similar amounts of adenosine triphosphate (ATP), 4.6 ± 0.2 (SD), 5.0 ± 1.1, 4.9 ± 0.6 µmoles ATP/1011 platelets respectively, and adenosine diphosphate (ADP), 2.4 ± 0.7, 2.8 ± 0.6, 3.0 ± 0.3 umoles ADP/1011 platelets respectively. However the marked elevation of specific radioactivity of ADP and ATP in these resting platelets indicated the platelet of the neonate has decreased adenine nucleotide stores.In addition to these decreased stores of adenine nucleotides, infant platelets showed significantly impaired release of ADP and ATP on exposure to collagen. The release of ADP in infants, mothers, and other adults was 0.9 ± 0.5 (SD), 1.5 ± 0.5, 1.5 ± 0.1 umoles/1011 platelets respectively; that of ATP was 0.6 ± 0.3, 1.0 ± 0.1,1.3 ± 0.2 µmoles/1011 platelets respectively. With collagen-induced release, platelets of newborn infants compared to those of other subjects showed only slight increased specific radioactivities of adenine nucleotides over basal levels. The content of metabolic hypoxanthine, a breakdown product of adenine nucleotides, increased in both platelets and plasma in all subjects studied.In contrast, with adrenaline as release inducer, the platelets of the newborn infant showed no adenine nucleotide release, no change in total ATP and level of radioactive hypoxanthine, and minimal change in total ADP. The reason for this decreased adrenaline reactivity of infant platelets compared to reactivity of adult platelets is unknown.Infant platelets may have different membranes, with resulting differences in regulation of cellular processes, or alternatively, may be refractory to catecholamines because of elevated levels of circulating catecholamines in the newborn period.


2020 ◽  
Vol 20 (10) ◽  
pp. 908-920 ◽  
Author(s):  
Su-Min Wu ◽  
Xiao-Yang Qiu ◽  
Shu-Juan Liu ◽  
Juan Sun

Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson’s disease and Alzheimer’s disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
G. Kocic ◽  
J. Nikolic ◽  
T. Jevtovic-Stoimenov ◽  
D. Sokolovic ◽  
H. Kocic ◽  
...  

L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism:5′-nucleotidase (5′-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme,5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.


RSC Advances ◽  
2020 ◽  
Vol 10 (62) ◽  
pp. 38128-38141
Author(s):  
Sherif S. Ebada ◽  
Nariman A. Al-Jawabri ◽  
Fadia S. Youssef ◽  
Dina H. El-Kashef ◽  
Tim-Oliver Knedel ◽  
...  

On Wednesday 11th March, 2020, the world health organization (WHO) announced novel coronavirus (COVID-19, also called SARS-CoV-2) as a pandemic.


1997 ◽  
Vol 325 (3) ◽  
pp. 661-666 ◽  
Author(s):  
Ludwig MISSIAEN ◽  
Jan B. PARYS ◽  
Humbert DE SMEDT ◽  
Ilse SIENAERT ◽  
Henk SIPMA ◽  
...  

The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1,4,5)P3 receptor. It was observed that 3′-phosphoadenosine 5′-phosphosulphate, CoA, di(adenosine-5′)tetraphosphate (Ap4A) and di(adenosine-5′)pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4,5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.


2018 ◽  
Author(s):  
Qin Yu ◽  
Kun Qu ◽  
Yorgo Modis

SummaryDouble-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type-I-interferon signaling platform. Here, we determined cryoEM structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs, at resolutions sufficient to build and refine atomic models. The structures identify the filament forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition.eTOCStructures of MDA5 bound to double-stranded RNA reveal a flexible, predominantly hydrophobic filament forming interface. The filaments have variable helical twist. Structures determined with ATP and transition state analogs show how the ATPase cycle is coupled to changes in helical twist, the mode of RNA binding and the length of the RNA footprint of MDA5.HighlightsCryoEM structures of MDA5-dsRNA filaments determined for three catalytic statesFilament forming interfaces are flexible and predominantly hydrophobicMutation of filament-forming residues can cause loss or gain of IFN-β signalingATPase cycle is coupled to changes in filament twist and size of the RNA footprint


1975 ◽  
Vol 148 (3) ◽  
pp. 527-531 ◽  
Author(s):  
D R Fayle ◽  
G J Barritt ◽  
F L Bygrave

The effect of the local anaesthetic, butacaine, on adenine nucleotide binding and translocation in rat liver mitochondria partially depleted of their adenine nucleotide content was investigated. The range of butacaine concentrations that inhibit adenine nucleotide translocation and the extent of the inhibition are similar to the values obtained for native mitochondria. Butacaine does not alter either the total number of atractyloside-sensitive binding sites of depleted mitochondria, or the affinity of these sites for ADP or ATP under conditions where a partial inhibition of the rate of adenine nucleotide translocation is observed. The data are consistent with an effect of butacaine on the process by which adenine nucleotides are transported across the mitochondrial inner membrane rather than on the binding of adenine nucleotides to sites on the adenine nucleotide carrier. The results are briefly discussed in relation to the use of local anaesthetics in investigations of the mechanism of adenine nucleotide translocation.


1986 ◽  
Vol 233 (3) ◽  
pp. 885-891 ◽  
Author(s):  
J J F Sarkis ◽  
J A Guimarães ◽  
J M C Ribeiro

The salivary apyrase activity of the blood-sucking bug Rhodnius prolixus was found to reside in a true apyrase (ATP diphosphohydrolase, EC 3.6.1.5) enzyme. The crude saliva was devoid of 5′-nucleotidase, inorganic pyrophosphatase, phosphatase and adenylate kinase activities. ATP hydrolysis proceeded directly to AMP and Pi without significant accumulation of ADP. Km values for ATP and ADP hydrolysis were 229 and 291 microM respectively. Ki values for ATP and ADP inhibition of ADP and ATP hydrolysis were not different from the Km values, and these experiments indicated competitive inhibition. Activities were purified 126-fold by combined gel filtration and ion-exchange chromatography procedures with a yield of 63%. The purified enzyme displayed specific activities of 580 and 335 mumol of Pi released/min per mg of protein for ATP and ADP hydrolysis respectively. The action of the purified enzyme on several phosphate esters indicates that Rhodnius apyrase is a non-specific nucleosidetriphosphate diphosphohydrolase.


Sign in / Sign up

Export Citation Format

Share Document