scholarly journals Antibacterial Activity and Chemical Composition of Turkish Propolis

2001 ◽  
Vol 56 (11-12) ◽  
pp. 1112-1115 ◽  
Author(s):  
Nevin Keskin ◽  
Selçuk Hazir ◽  
K. Hüsnü Can Baser ◽  
Mine Kürkçüoglu

Abstract The antibacterial activities of propolis samples have been examined in vitro, according to the principles accepted for the determination of a similar activity of antibiotics with the use of solid and liquid media. It has been found that propolis extracts showed antibacterial activity through a range of commonly encountered gram positive cocci (5. aureus, beta hem. Streptococus), but had weak activity against gram negative bacteria (E . coli, P. aeruginosa). GC/MS analysis showed that propolis samples contain a variety of chemical compounds in­ cluding aromatic compounds, fatty acid esters and sesquiterpenes.

2019 ◽  
Vol 4 (2) ◽  
pp. 263-277
Author(s):  
Evana - Evana ◽  
Pratiwi Pratiwi ◽  
Ahmad Fathoni ◽  
Oscar Efendi ◽  
Andria Agusta

 Giant forest ant Dinomyrmex gigas is one of the largest ants species in the world, native to the rain forests of Southeast Asia. It is known that ants have glands that produce chemical compounds that inhibit the growth of microbes. Therefore, it is necessary to deter-mine the antioxidant and antibacterial activities as well as identify the chemical compounds of D. gigas extract. D. gigas was extracted successively with n-hexane, ethanol and methanol. The antioxidant activity was evaluated by determination of the half-maximal inhibi-tory concentration (IC50) values while the antibacterial activities of the extracts were determined by measuring the minimum inhibitory concentration (MIC). The results exhibited that the IC50 values of n-hexane, ethanolic and methanolic extracts were 336.18±0.0984, 89.16±0.0219 and 90.72±0.0894 μg/mL respectively. The ethanolic extract exhibited the highest AAI value (0.34) followed by metha-nolic extract (0.33) and n-hexane extract (0.09). Based on AAI val-ues, the extracts were classified as moderate antioxidants. The best MIC values were 625 μg/mL for both ethanolic and methanolic ex-tracts against S. aureus, while MIC values of all extracts against E. coli were >625 μg/mL. Based on MIC values, all of the extracts presented weak activity against both S. aureus and E.coli. The GC-MS analysis showed that there are up to 30 compounds construct-ed of the ethanolic extract. Three major compounds are ethyl oleate  (29.78%), n-hexadecanoic acid (17.54%) and oleic acid (10.65%). 


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Séverine Boisard ◽  
Anne-Marie Le Ray ◽  
Anne Landreau ◽  
Marie Kempf ◽  
Viviane Cassisa ◽  
...  

During this study, thein vitroantifungal and antibacterial activities of different extracts (aqueous and organic) obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains:Candida albicans, C. glabrata, andAspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains includingStaphylococcus aureus. Organic extracts showed a significant antifungal activity againstC. albicansandC. glabrata(MIC80between 16 and 31 µg/mL) but only a weak activity towardsA. fumigatus(MIC80= 250 µg/mL). DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially againstS. aureus(SA) and several of its methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains (MIC10030–97 µg/mL). A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.


2021 ◽  
Vol 2 (2) ◽  
pp. 16-24
Author(s):  
Sara Hajib ◽  
Mohamed Hssaini ◽  
Anouar Alami ◽  
Hicham Bekkari ◽  
Najoua Benchemsi ◽  
...  

Bacterial resistance to antibiotics and disinfectants has become a real concern. The hospital presents a favorable environment for the colonization and development of bacteria resistant to antibiotics and disinfectants. The search for new antimicrobial compounds is essential to combat this phenomenon. Tetrazole derivatives may represent a solution due to their interesting antibacterial activity. In this work, two tetrazole derivatives; thiophene-2-carbaldehyde (T2C) and 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT), were evaluated for their antibacterial activities against a set of reference strains and strains isolated from the hospital environment. The antibacterial effect was studied by the disc diffusion method and by determination of MIC and MBC. The 5-(thiophen-2-yl)-1H-tetrazole (5TPh-1HT) has a broader spectrum of activity than its oxime derivative (T2C). The latter has bactericidal activity only on gram-negative Escherichia coli, Pseudomonas aeruginosa with MICs ranging from 0.62 mg/ml to 2.5 mg/ml, while 5TPh-1HT has a bactericidal effect on all strains with MICs ranging from 0.62 mg/ml to 1.25 mg/ml. Both products have a significant inhibitory activity on the strains tested in particular E. coli H, S. aureus H, P. aeruginosa and Streptococcus spp A. It was found that these activities vary depending on the microbial strain tested and the product applied.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


Author(s):  
Ruvanthika Pn ◽  
Manikandan S

Objective: The objective of the study was to evaluate whether ethanolic extracts of Nelumbo nucifera (EENN) seedpod and quercetin (active component of NN) possess antibacterial proprieties against Gram (-) bacteria such as Escherichia coli and Pseudomonas aeruginosa and Gram (+) bacteria such as Staphylococcus aureus. Methods: Antibacterial activities of EENN seedpod and quercetin were investigated using disc diffusion method, minimum inhibitory concentration against E. coli and P. aeruginosa and Gram (+) bacteria such as S. aureus. Results: The antibacterial activity of both EENN seedpod and quercetin was found to be increased in dose-dependent manner. The maximum zone of inhibition was exhibited by both EENN seedpod and quercetin against E. coli (14 mm and 15 mm) and P. aeruginosa (13 mm and 15 mm). Gram-negative bacteria were more susceptible to the EENN seedpod extract and quercetin than Gram-positive bacteria.Conclusion: The results of the present study suggested that the effect of EENN seedpod and quercetin against the tested bacteria in vitro may contribute to the in vivo activities of the EENN seedpod and quercetin.


2020 ◽  
Vol 83 (2) ◽  
pp. 331-337
Author(s):  
WENYUE WANG ◽  
RUI WANG ◽  
GUIJU ZHANG ◽  
FANGLI CHEN ◽  
BAOCAI XU

ABSTRACT Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry. HIGHLIGHTS


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 153
Author(s):  
Muhammad Kashif Maan ◽  
Zhifei Weng ◽  
Menghong Dai ◽  
Zhenli Liu ◽  
Haihong Hao ◽  
...  

Cyadox has potential use as an antimicrobial agent in animals. However, its pharmacodynamic properties have not been systematically studied yet. In this study, the in vitro antibacterial activities of cyadox were assayed, and the antibacterial efficacy of cyadox against facultative anaerobes was also determined under anaerobic conditions. It was shown that Clostridium perfringens and Pasteurella multocida (MIC = 0.25 and 1 μg/mL) from pigs, Campylobacter jejuni and Pasteurella multocida from poultry, E. coli, Streptococcus spp., and Flavobacterium columnare from fish were highly susceptible to cyadox (MIC= 1 and 8 μg/mL). However, F. columnare has no killing effect for drug tolerance. Under in vitro anaerobic conditions, the antibacterial activity of cyadox against most facultative anaerobes was considerably enhanced Under anaerobic conditions for the facultative anaerobes, susceptible bacteria were P. multocida, Aeromonas spp. (including A. hydrophila, A. veronii, A. jandaei, A. caviae, and A. sobria, excluding A. punctata), E. coli, Salmonella spp. (including S. choleraesui, S. typhimurium, and S. pullorum), Proteus mirabilis, Vibrio fluvialis, Yersinia ruckeri, Erysipelothrix, Acinetobacter baumannii, and Streptococcus agalactiae (MICs were 0.25~8 μg/mL, MBCs were 1–64 μg/mL). Intermediate bacteria were Enterococcus spp. (including E. faecalis and E. faecium), Yersinia enterocolitica, and Streptococcus spp. (MICs mainly were 8~32 μg/mL, MBCs were 16~128 μg/mL). This study firstly showed that cyadox had strong antibacterial activity and had the potential to be used as a single drug in the treatment of bacterial infectious diseases.


1997 ◽  
Vol 41 (12) ◽  
pp. 2652-2663 ◽  
Author(s):  
T Fukuoka ◽  
S Ohya ◽  
Y Utsui ◽  
H Domon ◽  
T Takenouchi ◽  
...  

CS-834 is a novel oral carbapenem antibiotic. This compound is an ester-type prodrug of the active metabolite R-95867. The antibacterial activity of R-95867 was tested against 1,323 clinical isolates of 35 species and was compared with those of oral cephems, i.e., cefteram, cefpodoxime, cefdinir, and cefditoren, and that of a parenteral carbapenem, imipenem. R-95867 exhibited a broad spectrum of activity covering both gram-positive and -negative aerobes and anaerobes. Its activity was superior to those of the other compounds tested against most of the bacterial species tested. R-95867 showed potent antibacterial activity against clinically significant pathogens: methicillin-susceptible Staphylococcus aureus including ofloxacin-resistant strains, Streptococcus pneumoniae including penicillin-resistant strains, Clostridium perfringens, Neisseria spp., Moraxella catarrhalis, most members of the family Enterobacteriaceae, and Haemophilus influenzae (MIC at which 90% of strains are inhibited, < or =0.006 to 0.78 microg/ml). R-95867 was quite stable to hydrolysis by most of the beta-lactamases tested except the metallo-beta-lactamases from Stenotrophomonas maltophilia and Bacteroides fragilis. R-95867 showed potent bactericidal activity against S. aureus and Escherichia coli. Penicillin-binding proteins 1 and 4 of S. aureus and 1Bs, 2, 3, and 4 of E. coli had high affinities for R-95867. The in vivo efficacy of CS-834 was evaluated in murine systemic infections caused by 16 strains of gram-positive and -negative pathogens. The efficacy of CS-834 was in many cases superior to those of cefteram pivoxil, cefpodoxime proxetil, cefdinir, and cefditoren pivoxil, especially against infections caused by S. aureus, penicillin-resistant S. pneumoniae, E. coli, Citrobacter freundii, and Proteus vulgaris. Among the drugs tested, CS-834 showed the highest efficacy against experimental pneumonia in mice caused by penicillin-resistant S. pneumoniae.


2020 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Gabriele Meroni ◽  
Joel F. Soares Filipe ◽  
Piera A. Martino

Silver nanoparticles (AgNPs) are promising alternatives to antibiotics. The aims of this study were to produce AgNPs using two biological methods and determine their antibacterial activity against Pseudomonas aeruginosa and Staphylococcus pseudintermedius. AgNPs were biosynthesized from an infusion of Curcuma longa (turmeric) and the culture supernatant of E. coli. Characterization was achieved by ultraviolet-visible spectroscopy and by Transmission Electron Microscopy (TEM). The antibacterial properties of NPs from C. longa (ClAgNPs) and E. coli (EcAgNPs), alone and in combination with carbenicillin and ampicillin, were investigated through the Kirby-Bauer disk diffusion assay and the minimum inhibitory concentration (MIC). Dimensions of NPs ranged from 11.107 ± 2.705 nm (ClAgNPs) to 27.282 ± 2.68 nm (EcAgNPs). Kirby-Bauer and MIC assays showed great antibacterial abilities for both NPs alone and in combination with antibiotics. EcAgNPs alone showed the most powerful antibacterial activities, resulting in MIC values ranging from 0.438 ± 0.18 µM (P. aeruginosa) to 3.75 ± 3.65 µM (S. pseudintermedius) compared to those of ClAgNPs: 71.8 ± 0 µM (P. aeruginosa) and 143.7 ± 0 µM (S. pseudintermedius). The antibiofilm abilities were strain-dependent, but no statistical differences were found between the two NPs. These results suggest the antibacterial potential of AgNPs for the treatment of infectious diseases.


Author(s):  
Pratima H ◽  
Pratima Marthad

 Objectives: The present study was conducted to assess the antibacterial activity of seed coat and cotyledon of Cajanus cajan with various solvents such as petroleum ether, chloroform, ethanol, and aqueous.Methods: The crude extracts were obtained using Soxhlet successive extraction method. The antibacterial activity of seed coat and cotyledon extracts at different concentration (50 and 100 mg/mL) was evaluated against certain pathogenic Gram-positive bacteria of Bacillus subtilis, Staphylococcus aureus, and Streptococcus pneumoniae and Gram-negative bacteria of Salmonella typhi, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa by agar well diffusion assay.Results: The results show that the ethanolic extract of seed coat had highest activity against B. subtilis (22.0±0.13 mm). Whereas, the aqueous extract of cotyledon had highest activity against S. aureus (20.0±0.02 mm) and S. typhi (20.0±0.04 mm) at 100 mg/mL. The S. pneumoniae and P. aeruginosa were completely resistant to all extracts of seed coat. Similarly, S. pneumoniae, K. pneumoniae, E. coli, and P. aeruginosa were totally resistant to all tested cotyledon extracts. The phytochemical results show the presence of alkaloids, steroids, phenols, flavonoids, tannins, lignins, glycosides, and absence of saponins in seed coat and cotyledon.Conclusion: This study shows that C. cajan seed coat and cotyledon had potential antibacterial activity against B. subtilis, S. aureus, and S. typhi. These extracts may be exploited for the development of antimicrobial and alternative remedies for infections and diseases caused by respective pathogens.


Sign in / Sign up

Export Citation Format

Share Document