Carotenoid Production by Lactoso-Negative Yeasts Co-Cultivated with Lactic Acid Bacteria in Whey Ultrafiltrate

2003 ◽  
Vol 58 (7-8) ◽  
pp. 562-567 ◽  
Author(s):  
Ginka I. Frengova ◽  
Simova D. Emilina ◽  
Dora M. Beshkova

Two strains were selected - the lactoso-negative yeast Rhodotorula rubra GED2 and the homofermentative Lactobacillus casei subsp. casei Ha1 for co-cultivation in cheese whey ultrafiltrate (WU) and active synthesis of carotenoids. Under conditions of intensive aeration (1.0 l/1 min, 220 rpm), a temperature of 30 °C, WU with 55.0 g lactose/l, initial pH = 5.5, the carotenoid content in the cells reached a maximum, when the growth of the cultures had come to an end, i.e. in the stationary phase of the yeast. The maxima for dry cell accumulation (27.0 g/l) and carotenoid formation (12.1 mg/l culture medium) did not coincide on the 5th and 6th day, respectively. A peculiarity of the carotenoid-synthesizing Rh. rubra GED2 strain, co-cultivated with L. casei Ha1, was the production of carotenoids with high β-carotene content (46.6% of total carotenoids) and 10.7% and 36.9% for torulene and torularhodin, respectively.

2020 ◽  
Vol 15 (1) ◽  
pp. 27-34
Author(s):  
Shilpa Pandurangaiah ◽  
Sadashiva A T ◽  
Shivashankar K S ◽  
SudhakarRao D V ◽  
Ravishankar K V

Cherry tomatoes are rich sources of carotenoids. The carotenoids are known to be precursors of vitamin A and also act as an antioxidant. It is important to visually judge the tomato surface color for higher β carotene content since this is the major provitamin AA carotenoid. Estimation of carotenoids by HPLC (High Performance Liquid Chromatography) and spectrophotometric methods in tomatoes are very expensive and time consuming. Therefore, colorimeters can be used to describe the color and determine the carotenoid content in a relatively easy and inexpensive manner. The objective of this study was to determine, if the carotenoid content within cherry tomatoes measured by conventional method could correlate with colorimetric CIE (Commission International del’Eclairage) L*, a*, b* color space values. Strong correlations were found between color surface value a* and total carotenoids (0.82) and lycopene content (0.87). We also observed positive correlation for the b* color value with β carotene (0.86). The L* value was negatively correlated (-0.78) with an increase in carotenoids. These close associations between color space values L*, a*, b* and carotenoids will help the breeders to quickly screen large germplasm/ breeding lines in their breeding program for improvement in carotenoid content through this time saving, inexpensive and nondestructive method at fully ripe stage.


2021 ◽  
Vol 39 (3) ◽  
pp. 299-304
Author(s):  
Lucimeire Pilon ◽  
Jaqueline S Guedes ◽  
Bruna S Bitencourt ◽  
Raphael Augusto de C Melo ◽  
Larissa PC Vendrame ◽  
...  

ABSTRACT Sweetpotato (Ipomoea batatas) is a root crop grown in many countries. This tuberous root is a source of energy, nutrients, and phytochemicals. In this study, bioactive compounds and physical and physicochemical qualities of sweetpotato genotypes were evaluated. Eight new genotypes of sweetpotato produced by Embrapa Hortaliças (orange-fleshed: MD09026-OF and MD09024-OF; cream-fleshed: MD09011-CF, MD09004-CF, MD10039-CF, and MD10004-CF; yellow-fleshed: MD09017-YF and MD12002-YF) and two cultivars used as controls (Beauregard and Brazlândia Roxa) were evaluated for color, soluble solids, dry matter, phenolic compounds, total carotenoids and β-carotene. Hue angles differed even between those sweetpotatoes with the same flesh color. The orange-fleshed genotypes MD09024-OF, MD09026-OF, and Beauregard, had the lowest L*, showing to be darker than the others. These sweetpotatoes also had the brightest flesh colors with higher C*. The orange-fleshed genotypes MD09026-OF and MD09024-OF were sweeter (10.55oBrix and 9.23oBrix) than Beauregard (5.12oBrix). Brazlândia Roxa had the highest dry matter content (38.05%), followed by the genotypes MD10004-CF, MD09017-YF, MD09026-OF MD10039-CF, and MD09011-CF, which showed similarity, ranging from 32.33% to 29.12%. The highest contents of total carotenoids were found for the orange-fleshed genotypes MD09026-OF (80.06 mg g-1) and MD09024-OF (70.56 mg g-1) and Beauregard (73.12 mg g-1). These same genotypes showed the highest total phenolic compounds (0.815 mg g-1 and 0.686 mg g-1, respectively). MD09026-OF showed the highest content of β-carotene (46.47 mg g-1). MD09026-OF was the most prominent genotype among those evaluated, as it showed the highest total carotenoid, β-carotene, phenolic compounds, and soluble solids content, in addition to a high dry matter content.


Author(s):  
Elena Andreea POP ◽  
Andrea BUNEA ◽  
Florina COPACIU ◽  
Carmen SOCACIU ◽  
Adela PINTEA

Apricots are well known for the high content of bioactive compounds such as carotenoids, polyphenols, vitamins and minerals. Several studies have pointed out the chemical composition or the biological effects of apricots, but limited information are available regarding the stability of active compounds during storage or processing. The aim of this study was to determine the stability of major carotenoids in commercial dried apricots during storage.Carotenoids were extracted monthly from dried apricots kept in a dark environment, at room temperature, for twelve months. Total carotenoids were determined using the spectrophotometric method while the most relevant carotenoids were analyzed by high-performance liquid chromatography-photodiode array detection (HPLC-PDA) on a C30 column and using a gradient elution system.Initial carotenoid content of dried fruits was 6.72 mg/100g, while after six months of storage it decreased to 2.46 mg/100g. After twelve months of storage the total carotenoid content was 0.82 mg/100g, representing 20.35 % of the initial concentration. The major carotenoids identified in apricots were: all trans β-carotene, its geometrical isomers (9-cis-β-carotene; 13-cis-β-carotene; 9,13-di-cis β-carotene); β-carotene-5,8-epoxide; β-cryptoxanthin and β-cryptoxanthin palmitate. Significant decreases were observed for all pigments but all trans β-carotene appears to be the most sensitive pigment, with 15.7 % residual concentration. Although the concentrations of β-cryptoxanthin palmitate is small, it has shown significant increased stability compared to carotenes.


2003 ◽  
Vol 58 (3-4) ◽  
pp. 225-229 ◽  
Author(s):  
Emilina D. Simova ◽  
Ginka I. Frengova ◽  
Dora M. Beshkova

Under intensive aeration (1.3 l/l min) the associated growth of Rhodotorula rubra GED2 and Lactobacillus casei subsp. casei in cheese whey ultrafiltrate (55 g lactose/l) proceeded effectively for both cultures with production of maximum carotenoids (12.4 mg/l culture fluid). For maximum amount of carotenoids synthesized in the cell, the yeast required more intensive aeration than the aeration needed for synthesis of maximum concentration of dry cells. Maximum concentration of carotenoids in the cell (0.49 mg/g dry cells) was registered with air flow rate at 1.3 l/l min, and of dry cells (27.0 g/l) at 1.0 l/l min. An important characteristic of carotenogenesis by Rhodotorula rubra GED2 + Lactobacillus casei subsp. casei was established - the intensive aeration (above 1.0 l/l min) stimulated β-carotene synthesis (60% of total carotenoids).


2004 ◽  
Vol 21 (3) ◽  
pp. 689-692 ◽  
Author(s):  
Bong Kyun Kim ◽  
Pyoung Kyu Park ◽  
Hee Jeong Chae ◽  
Eui Yong Kim

2012 ◽  
Vol 24 (1) ◽  
pp. 33-39
Author(s):  
Wanda Wadas ◽  
Halina Mioduszewska ◽  
Krzysztof Kalinowski

Effects of selected agronomical factors on the content of health-promoting compounds in spaghetti squash (Cucurbita pepoL. subsp.pepo)The study examined the effects of the sowing date (5, 15 and 25 May) and plant spacing (1 × 0.6 m, 1 × 0.8 m and 1 × 1 m) on the content of carotenoids and L-ascorbic acid in the fruits of two cultivars of spaghetti squash (‘Makaronowa Warszawska' and ‘Pyza’). The field experiment was carried out in central-eastern Poland. Fully mature spaghetti squash fruits were harvested from the beginning of September to the beginning of October. The content of total carotenoids and β-carotene was the greatest in the fruits of plants sown on 15 May. The sowing date did not affect the content of L-ascorbic acid. Increasing the plant spacing from 1 × 0.6 m to 1 × 1 m resulted in an increase of total carotenoid content, particularly for the spaghetti squash sown on 25 May. Plant spacing did not have a significant effect on the content of β-carotene and L-ascorbic acid. Fruits of the ‘Makaronowa Warszawska’ with light orange flesh contained more total carotenoids and β-carotene than fruits of the ‘Pyza’ with cream-coloured flesh. The content of L-ascorbic acid in the fruits of both cultivars did not differ significantly.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 830A-830 ◽  
Author(s):  
Penelope Perkins-Veazie* ◽  
J.K. Collins ◽  
Warren Roberts

Watermelons contain the carotenoids b-carotene, phytofluene, lycopene, and lutein. These carotenoids play an important role in plant oxidative protection and may serve to protect humans against oxidative assaults. Of the carotenoids, lycopene is the predominant pigment in red-fleshed melons (30-130 μg·g-1), b-carotene is present in small amounts (1-14 μg·g-1), and other carotenoids are present in minute amounts (1-3 μg·g-1). Seventy varieties were screened for lycopene content using scanning colorimetry, spectrophotometry, and HPLC techniques, and grouped as low, medium, high, or very high in lycopene. Pink-fleshed heirloom varieties such as Sweet Princess and Black Diamond contained low amounts of lycopene (<40 μg·g-1). A number of seeded and seedless varieties had medium amounts of lycopene (40-60 μg·g-1). Varieties in the high category (60-80 μg·g-1) were primarily seedless types, although `Dixie Lee', an open-pollinated, seeded variety had 69 μg·g-1, indicating that high lycopene content is not restricted to hybrid or seedless melon germplasm. Six selections were found to be very high in lycopene (>80 μg·g-1), including the minimelon Hazera 6008 (Extazy). Total carotenoids and carotenoid profiles were determined by HPLC for 23 varieties in 2003. Both seeded and seedless type melons had varieties high in bcarotene, lycopene, and total carotenoids. These results indicate that commercial watermelon varieties have a wide range in lycopene and b-carotene content, and that most commercially important varieties are high in lycopene and total carotenoids, providing important sources of phytonutrients to the human diet.


2004 ◽  
Vol 129 (4) ◽  
pp. 523-529 ◽  
Author(s):  
Catherine Nicolle ◽  
Gérard Simon ◽  
Edmond Rock ◽  
Pierre Amouroux ◽  
Christian Rémésy

Carrot (Daucus carota L.) is ranked among vegetables as the most consumed and the best provitamin A provider. Moreover, carrot also contains vitamins, phenolic compounds, and other antioxidant micronutrients. The influence of carrot genetic background on the content of several micronutrients was investigated. Carotenoids and vitamins (C and E) were analyzed by HPLC in 20 varieties of carrot, and antioxidant activity of carrots was investigated with colorimetric methods (ORAC and Folin-Ciocalteu). There were large differences among cultivars in carotenoid content (0.32 to 17 mg/100 g of fresh weight). In yellow and purple carrots, lutein represents nearly half of the total carotenoids. By contrast, in orange carrots, β-carotene represents the major carotenoid (65%). The concentration of vitamin E ranged from 191 to 703 μg/100 g of fresh weight, whereas the concentration in ascorbic acid ranged from 1.4 to 5.8 mg/100 g. For all these components, dark-orange carrots exhibited the highest values. Significant differences among these 20 varieties were also recorded for mineral and total phenolic compound concentrations. Purple and dark-orange carrots could be preferred to usual carrot varieties to benefit from their specific micronutrients (anthocyanins, carotenoids, or vitamin E). ORAC is a complex reflection of phytomicronutrients but is not tightly linked to vitamin C levels, as shown for white carrots, which are rich in this vitamin.


2015 ◽  
Vol 13 (1) ◽  
pp. 49-63
Author(s):  
Renata Maria Padovani ◽  
Jaime Amaya-Farfán

An assessment was made of the consumer accessibility by income to carotenoids in the eleven major Brazilian urban centers. The consumption data published by the POF (National Household Budget Survey, 1995-1996) and the Brazilian database on food carotenoids provided the basis for the study. The USDA-NCC Carotenoid Database for US foods was used whenever the carotenoid content was not found locally. Prudent individual daily intakes of beta-carotene (3 to 6mg), pro-vitamins A (5.2 to 6mg) and total carotenoids (9 to 18mg) were far from attained by the poorer households in all of the regions studied, but the availability rose as the level of income increased in all regions. The principal foods identified, which significantly contributed to the carotenoid supply were: (β-carotene) carrots, squash, mango and tomato, (lycopene) tomato, tomato sauce, watermelon and papaya, (lutein and zeaxanthin) corn flour, kale, lettuce and orange. The study suggests that consumption of carotenogenic foods in Brazil may have been low at the time, despite the wide natural distribution and abundance in the country. The implications that low consumption of carotenogenic foods may have on public health came to be better known in more recent years, but the data should be useful when comparing with the 2002/2003 POF.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1424
Author(s):  
Alessandra Fratianni ◽  
Giuseppina Adiletta ◽  
Marisa Di Matteo ◽  
Gianfranco Panfili ◽  
Serena Niro ◽  
...  

The aim of this research was to study the evolution of carotenoid compounds, antioxidant β-ctivity, volatiles and sensory quality in two mango cultivars dried at 50, 60 and 70 °C. Total carotenoids in fresh samples were about 12 and 6 mg/100 g (dry basis) in Keitt and Osteen samples, respectively. β-carotene was the main carotenoid, representing about 50% of total carotenoids. In both cultivars, carotenoids were more susceptible to drying at 60 °C. Total phenols and metal reduction activity were higher in Osteen than in Keitt, which had higher values in radical scavenging capacity. The antioxidant activities were best preserved with drying temperatures at 50 °C in Keitt and 60 °C in Osteen fruits. Fresh Osteen mango fruits had a volatile compound content of about 37.1, while Keitt of about 5.2 mg/kg (dry basis). All the compounds with odorous impact were significantly reduced after drying. As regards organoleptic characteristics through sensory analysis, Keitt dried mangoes were quite similar to the fresh product, compared to Osteen.


Sign in / Sign up

Export Citation Format

Share Document