Novel Metabolism of Nitrogen in Plants

2005 ◽  
Vol 60 (3-4) ◽  
pp. 265-271 ◽  
Author(s):  
Hiromichi Morikawa ◽  
Misa Takahashi ◽  
Atsushi Sakamoto ◽  
Manami Ueda-Hashimoto ◽  
Toshiyuki Matsubara ◽  
...  

Abstract Our previous study showed that approximately one-third of the nitrogen of 15N-labeled NO2 taken up into plants was converted to a previously unknown organic nitrogen (hereafter designated UN) that was not recoverable by the Kjeldahl method (Morikawa et al., 2004). In this communication, we discuss metabolic and physiological relevance of the UN based on our newest experimental results. All of the 12 plant species were found to form UN derived from NO2 (about 10-30% of the total nitrogen derived from NO2). The UN was formed also from nitrate nitrogen in various plant species. Thus, UN is a common metabolite in plants. The amount of UN derived from NO2 was greatly increased in the transgenic tobacco clone 271 (Vaucheret et al., 1992) where the activity of nitrite reductase is suppressed less than 5% of that of the wild-type plant. On the other hand, the amount of this UN was significantly decreased by the overexpression of S-nitrosoglutathione reductase (GSNOR). These findings strongly suggest that nitrite and other reactive nitrogen species are involved in the formation of the UN, and that the UN-bearing compounds are metabolizable. A metabolic scheme for the formation of UN-bearing compounds was proposed, in which nitric oxide and peroxynitrite derived from NO2 or endogenous nitrogen oxides are involved for nitrosation and/or nitration of organic compounds in the cells to form nitroso and nitro compounds, including N-nitroso and S-nitroso ones. Participation of non-symbiotic haemoglobin bearing peroxidase-like activity (Sakamoto et al., 2004) and GSNOR (Sakamoto et al., 2002) in the metabolism of the UN was discussed. The UN-bearing compounds identified to date in the extracts of the leaves of Arabidopsis thaliana fumigated with NO2 include a ⊿2- 1,2,3-thiadiazoline derivative (Miyawaki et al., 2004) and 4-nitro-β-carotene.

1950 ◽  
Vol 28c (6) ◽  
pp. 745-753 ◽  
Author(s):  
D. W. A. Roberts

A survey of the more promising modifications of the Kjeldahl method for nitrogen determination indicates that the method using mercuric oxide as the catalyst as recommended by the Association of Official Agricultural Chemists is the most satisfactory. However small discrepancies were found when this method was applied to wheat leaves fractionated into soluble and protein (actually coagulable and indiffusible) nitrogen fractions. This method includes all the nitrate nitrogen in wheat leaves together with the organic nitrogen even when no pretreatment with salicylic acid is used. A simple and satisfactory method of separating coagulable and indiffusible nitrogen from soluble nitrogen in wheat leaves and seedlings is described.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 379-385 ◽  
Author(s):  
Zhu Bo ◽  
Han Hongjuan ◽  
Fu Xiaoyan ◽  
Li Zhenjun ◽  
Gao Jianjie ◽  
...  

The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. TNT is toxic to many organisms, it is known to be a potential human carcinogen, and is persistent in the environment. This study presents a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of NAD(P)H-flavin nitroreductase (NFSB) from the Sulfurimonas denitrificans DSM1251. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerance and a strikingly higher capacity to remove TNT from their media. The highest specific rate constant of TNT disappearance rate was 1.219 and 2.297 mL/g fresh weight/h for wild type and transgenic plants, respectively. Meanwhile, the nitroreductase activity in transgenic plant was higher than wild type plant. All this indicates that transgenic plants show significantly enhanced tolerances to TNT; transgenic plants also exhibit strikingly higher capabilities of removing TNT from their media and high efficiencies of transformation.


2010 ◽  
Vol 107 (5) ◽  
pp. 2319-2324 ◽  
Author(s):  
Adolfo Rivero-Müller ◽  
Yen-Yin Chou ◽  
Inhae Ji ◽  
Svetlana Lajic ◽  
Aylin C. Hanyaloglu ◽  
...  

G protein–coupled receptors (GPCRs) are ubiquitous mediators of signaling of hormones, neurotransmitters, and sensing. The old dogma is that a one ligand/one receptor complex constitutes the functional unit of GPCR signaling. However, there is mounting evidence that some GPCRs form dimers or oligomers during their biosynthesis, activation, inactivation, and/or internalization. This evidence has been obtained exclusively from cell culture experiments, and proof for the physiological significance of GPCR di/oligomerization in vivo is still missing. Using the mouse luteinizing hormone receptor (LHR) as a model GPCR, we demonstrate that transgenic mice coexpressing binding-deficient and signaling-deficient forms of LHR can reestablish normal LH actions through intermolecular functional complementation of the mutant receptors in the absence of functional wild-type receptors. These results provide compelling in vivo evidence for the physiological relevance of intermolecular cooperation in GPCR signaling.


1966 ◽  
Vol 49 (2) ◽  
pp. 481-481
Author(s):  
John A Brabson

1967 ◽  
Vol 7 (26) ◽  
pp. 266 ◽  
Author(s):  
R Wetselaar

The mineralization coefficient (M.C.) (the amount of nitrate nitrogen formed in one season in sift, by bare fallowing the soil, as a percentage of the amount of organic nitrogen in the topsoil at the onset of the season) was measured on two soils at Katherine, N.T. The determination of M.C. is regarded as useful in evaluating the 'true' decomposition constant of a soil under annual cropping conditions. Its relation to the 'apparent' decomposition constant is discussed. Tippera clay loam had a mean M.C. of 4.80 per cent, and the fluctuations around the mean were positively related to amount of rainfall. The M.C. for Blain sand dropped from 12.5 per cent in the first year of cultivation to 5.0 per cent in the third and fourth years. The data indicate that the initial high nitrogen yields on the sandy soil will in time decline to a low level unless a legume crop is incorporated in the cropping system.


2020 ◽  
pp. jbc.RA120.016570
Author(s):  
Matthew L. Edin ◽  
Haruto Yamanashi ◽  
William E. Boeglin ◽  
Joan P. Graves ◽  
Laura M. DeGraff ◽  
...  

The mammalian epoxide hydrolase EPHX3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo.  Ephx3-/- mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3-/- pups appear normal, measurements of trans-epidermal water loss detected a modest and statistically significant increase compared to the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal epoxide hydrolase (EPHX1/mEH) or soluble epoxide hydrolase (EPHX2/sEH). This barrier phenotype in the Ephx3-/- pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p<0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (~85%) in the Ephx3-/- epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide, and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.


2020 ◽  
Vol 150 (8) ◽  
pp. 2023-2030 ◽  
Author(s):  
Jaume Amengual ◽  
Johana Coronel ◽  
Courtney Marques ◽  
Celia Aradillas-García ◽  
Juan Manuel Vargas Morales ◽  
...  

ABSTRACT Background Plasma cholesterol is one of the strongest risk factors associated with the development of atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction. Human studies suggest that elevated plasma β-carotene is associated with reductions in circulating cholesterol and the risk of myocardial infarction. The molecular mechanisms underlying these observations are unknown. Objective The objective of this study was to determine the impact of dietary β-carotene and the activity of β-carotene oxygenase 1 (BCO1), which is the enzyme responsible for the conversion of β-carotene to vitamin A, on circulating cholesterol concentration. Methods In our preclinical study, we compared the effects of a 10-d intervention with a diet containing 50 mg/kg of β-carotene on plasma cholesterol in 5-wk-old male and female C57 Black 6 wild-type and congenic BCO1-deficient mice. In our clinical study, we aimed to determine whether 5 common small nucleotide polymorphisms located in the BCO1 locus affected serum cholesterol concentrations in a population of young Mexican adults from the Universities of San Luis Potosí and Illinois: A Multidisciplinary Investigation on Genetics, Obesity, and Social-Environment (UP AMIGOS) cohort. Results Upon β-carotene feeding, Bco1−/− mice accumulated &gt;20-fold greater plasma β-carotene and had ∼30 mg/dL increased circulating total cholesterol (P &lt; 0.01) and non–HDL cholesterol (P &lt; 0.01) than wild-type congenic mice. Our results in the UP AMIGOS cohort show that the rs6564851 allele of BCO1, which has been linked to BCO1 enzymatic activity, was associated with a reduction in 10 mg/dL total cholesterol concentrations (P = 0.009) when adjusted for vitamin A and carotenoid intakes. Non–HDL-cholesterol concentration was also reduced by 10 mg/dL when the data were adjusted for vitamin A and total carotenoid intakes (P = 0.002), or vitamin A and β-carotene intakes (P = 0.002). Conclusions Overall, our results in mice and young adults show that BCO1 activity impacts circulating cholesterol concentration, linking vitamin A formation with the risk of developing ASCVD.


Sign in / Sign up

Export Citation Format

Share Document