Antimicrobial Activity of New 2,4-Disubstituted Thiazolidinone Derivatives

2009 ◽  
Vol 64 (11-12) ◽  
pp. 785-789 ◽  
Author(s):  
Wael A. El-Sayed ◽  
Yasser K. Abdel-Monem ◽  
Nabil M. Yousif ◽  
Nashwa Tawfek ◽  
Mohamed T. Shaaban ◽  
...  

A number of new disubstituted 2,5-thiazolidinone derivatives were synthesized and tested for their antimicrobial activity against Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa (Gram-negative), and Streptomyces species (Actinomycetes). They displayed different degrees of antimicrobial activities or inhibitory actions

2010 ◽  
Vol 65 (1-2) ◽  
pp. 15-21 ◽  
Author(s):  
Wael A. El-Sayed ◽  
Omar M. Ali ◽  
Saly R. El-Dakkony ◽  
Adel A.-H. Abdel-Rahman

A number of new substituted 1,2,4-triazole {[(1,2,4-triazolyl)ethyl]tetrazolyl} derivatives, their sugar hydrazones, and their acyclic C-nucleoside analogues were synthesized and tested for their antimicrobial activity against Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa (Gram-negative), and Streptomyces species (Actinomycetes). The synthesized compounds displayed different degrees of antimicrobial activities or inhibitory actions.


2010 ◽  
Vol 65 (1-2) ◽  
pp. 22-28 ◽  
Author(s):  
Wael A. El-Sayed ◽  
Omar M. Ali ◽  
Marwa M. Hathoot ◽  
Adel A.-H. Abdel-Rahman

A number of new substituted 1,2,4-triazole, 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole and 1,2,4-triazolo[3,4-b]1,3,4-thiadiazine derivatives were synthesized and tested for their antimicrobial activity against Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa (Gramnegative), and Streptomyces species (Actinomycetes). The synthesized compounds displayed different degrees of antimicrobial activities or inhibitory actions.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 670 ◽  
Author(s):  
Alzagameem ◽  
Klein ◽  
Bergs ◽  
Do ◽  
Korte ◽  
...  

The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0–7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300
Author(s):  
Daniyar Sadyrbekov ◽  
Timur Saliev ◽  
Yuri Gatilov ◽  
Ivan Kulakov ◽  
Roza Seidakhmetova ◽  
...  

A cyclopropane derivative of limonene, (1 S, 4 S, 6 R)-7,7-dichloro-4-[(1 S)-2,2-dichloro-1-methylcyclopropyl]-1-methylbicyclo [4.1.0] heptane (compound 2), was synthesized and its structure was determined by NMR and X-ray crystallographic methods. In addition, an antimicrobial activity of the compound against Gram-positive ( Staphylococcus aureus, Bacillus subtilis) and Gram-negative ( Escherichia coli, Pseudomonas aeruginosa) bacterial strains was also scrutinized.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. C. Nagajyothi ◽  
K. D. Lee

The eco-friendly synthesis of nanoparticles through various biological means helps to explore various plants for their ability to synthesize silver nanoparticles (AgNPs). Here we have synthesized AgNPs by using rhizome extract ofDioscorea batatasat as well as room temperature (). AgNPs were characterized under UV-vis spectrophotometer, SEM, FTIR, XRD, and EDX. The antimicrobial activity of AgNPs was evaluated on gram positive (B. substilisandS. aureus), gram negative (E. coli), and fungi (S. cerivisaeandC. albicans). At room temperature,S. cerivisaeandC. albicanswere found to be more susceptible to AgNPs than at .


Medicina ◽  
2008 ◽  
Vol 44 (12) ◽  
pp. 977 ◽  
Author(s):  
Alvydas Pavilonis ◽  
Algirdas Baranauskas ◽  
Ligita Puidokaitė ◽  
Žaneta Maželienė ◽  
Arūnas Savickas ◽  
...  

Objective. To evaluate the antimicrobial activity of soft and purified propolis extracts. Study object and methods. Antimicrobial activity of soft and purified propolis extracts was determined with reference cultures of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035, and fungus Candida albicans ATCC 60193. Microbiological tests were performed under aseptic conditions. Minimum inhibitory concentration (MIC) – the highest dilution of preparation (the lowest concentration of preparation) that suppresses growth of reference microorganisms – was determined. Results. Concentration of phenolic compounds in soft propolis extract that possesses antimicrobial activity against gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis) is 0.587±0.054 mg and 0.587±0.054–0.394±0.022 mg (P>0.05) and in purified propolis extract – 0.427±0.044 mg and 0.256±0.02 mg (P>0.05). Klebsiella pneumoniae is most resistant to soft propolis extract when the concentration of phenolic compounds is 1.119± 0.152 mg and to purified propolis extract when the concentration of phenolic compounds is 1.013±0.189 mg (P>0.05). Spore-forming Bacillus subtilis bacteria are more sensitive to soft and purified propolis extracts when the concentration of phenolic compounds is 0.134±0.002 mg and 0.075±0.025 mg, respectively, and Bacillus cereus – when the concentration is 0.394±0.022 mg and 0.256±0.02 mg (P>0.05). Sensitivity of fungus Candida albicans to soft and purified propolis extracts is the same as Bacillus subtilis. Encapsulated bacterium Klebsiella pneumoniae is most resistant to antimicrobial action of soft and purified propolis extracts as compared with gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria (P<0.05), gram-negative Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis (P<0.05), sporeforming Bacillus subtilis and Bacillus cereus bacteria (P<0.05), and fungus Candida albicans (P<0.05). There is no statistically significant difference between antimicrobial effect of soft propolis extract and purified propolis extract on gram-positive bacteria, gram-negative bacteria, spore-forming bacteria, encapsulated bacteria, and Candida fungus. Conclusions. Soft and purified propolis extracts possess antimicrobial activity. They could be recommended as natural preservatives in the manufacture of pharmaceutical products.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dhiraj Dutta ◽  
Swagata Goswami ◽  
Rama Dubey ◽  
Sanjai K. Dwivedi ◽  
Amrit Puzari

Abstract Background Growing microbial resistance towards the existing antimicrobial materials appears as the greatest challenge for the scientific community and development of new antimicrobial materials has become an important research objective. Results In this work, antimicrobial activity of silver-coated hollow poly(methylmethacrylate) microspheres (PMB) having a diameter of 20–80 µm was evaluated against two bacterial strains, Gram-positive Bacillus subtilis (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). The polymeric PMMA microspheres were synthesized by solvent evaporation technique and were further coated with silver (Ag) under microwave irradiation on their outer surface using an electroless plating technique. It was observed that Ag was uniformly coated on the surface of microspheres. Characterization of the coated microspheres was performed using optical microscope (OMS), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), UV–Vis spectroscopy, FTIR spectroscopy and thermogravimetric analysis (TGA) techniques. We have shown that the silver-coated microspheres were potent bactericidal material for water as they are highly active against the tested microorganisms. The results of the antibacterial tests indicated that APMB particles showed enhanced inhibition rate for both Gram-positive and Gram-negative bacteria and also exhibited dose-dependent antibacterial ability. The diameters of zone of inhibition were14.3 ± 0.2 mm against B. subtilis and 15.2 ± 0.9 mm against E. coli at a concentration of 8 mg. At this concentration, total removal of both Bacillus subtilis and Escherichia coli was observed. The results of shake flask technique for a concentration of 8 mg showed no bacterial presence after 24 h in both the cases. In other words, the material acted efficiently in bringing down the bacterial count to zero level for the tested strains. During the experiments, we have also confirmed that use of this material for water disinfection does not cause leaching of silver ion in to the water solution. The material can be successfully regenerated by backwashing with water. Conclusions Considering the cost-effective synthesis, ability to regenerate and very low level of leaching of the material, it can be projected as an advanced material for water disinfection and antimicrobial application.


2021 ◽  
Vol 10 (1) ◽  
pp. 851-859
Author(s):  
Lebogang Mogole ◽  
Wesley Omwoyo ◽  
Elvera Viljoen ◽  
Makwena Moloto

Abstract The resistance of microorganisms towards antibiotics remains a big challenge in medicine. Silver nanoparticles (AgNPs) received attention recently for their characteristic nanosized features and their ability to display antimicrobial activities. This work reports the synthesis of AgNPs using the Citrus sinensis peels extract in their aqueous, mild, and less hazardous conditions. The effect of concentration variation (1%, 2%, and 3%) of the plant extracts on the size and shape of the AgNPs was investigated. The antimicrobial activities were tested against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae. Absorption spectra confirmed the synthesis by the surface Plasmon resonance peaks in the range 400–450 nm for all the AgNPs. FTIR spectra confirmed that Citrus sinensis peels extract acted as both reducing and surface passivating agent for the synthesized AgNPs. TEM revealed spherical AgNPs with average size of 12 nm for 3% concentration as compared to the agglomeration at 1% and 2%. All the AgNPs synthesized using Citrus sinensis peels extracts (1%, 2%, and 3%) exhibited antimicrobial activity against both gram-positive and negative bacteria. These results indicated a simple, fast, and inexpensive synthesis of silver nanoparticles using the Citrus sinensis peels extract that has promising antibacterial activity.


1970 ◽  
Vol 18 ◽  
pp. 128-133 ◽  
Author(s):  
MTH Molla ◽  
MS Ahsan ◽  
MT Alam ◽  
ME Haque

Context: Development of resistance in human pathogens against conventional antibiotic necessitates searching indigenous medicinal plants having antibacterial property. Seven medicinal plants used actively in folklore, ayurvedic and traditional system of medicine were selected for the evaluation of their antimicrobial activity for this study.   Objectives: Evaluation of the effectiveness of some medicinal plant extracts against four Gram-positive and five Gram-negative bacteria.  Materials and Methods: The antibacterial activity of the crude ethanolic extracts obtained from the leaves of seven medicinal plants; viz., Andrographis paniculata, Catharanthus roseus, Adhatoda vasica, Vitex vegundo, Aloe vera, Flacortia ramontchi and Nyctanthes arbortristis were tested against nine bacteria at concentrations of 300-, 400- and 500 μg/ml. Standard antibiotic disc kanamycin (30μg/ml) was used for comparison. The minimum inhibitory concentration (MIC) of ethanolic extracts of the leaves of these medicinal plants were determined by testing the extracts on four Gram-positive and five Gram-negative bacteria by serial tube dilution method.   Results: All the extracts have notable antimicrobial activities against the test organisms. The ethanolic extracts of the leaves showed the highest antimicrobial activities against Bacillus megaterium and Shigella dysenteriae for An. paniculata, Ad. vasica and Al. vera; Bacillus subtilis and Salmonella typhi for C. roseus and N. arbortristis; Staphylociccus aureus and Salmonella typhi for V. vegundo; and Bacillus subtilis and Shigella sonnei for F. ramontchi respectively. The extract of the plants had MIC values ranging from 32 to 128 mg/ml. All plant extracts showed no MIC against Shigella shiga and against Sarcina lutea only C. roseus showed MIC 128 mg/ml.   Conclusion: The results revealed that the ethanolic extracts of the plants under present investigation have notable antimicrobial activities.   Keywords: medicinal plants; antimicrobial screening; MIC; bacteria. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8788 JBS 2010; 18(0): 128-133


Sign in / Sign up

Export Citation Format

Share Document