The extract, LXB-1, from the barks of Liriodendron × hybrid, induced apoptosis via Akt, JNK and ERK1/2 pathways in A549 lung cancer cells

2015 ◽  
Vol 70 (11-12) ◽  
pp. 305-311 ◽  
Author(s):  
Jin-Hui Chen ◽  
Sen-Sen Lin ◽  
Wei-Xin Wang ◽  
Sheng-Tao Yuan ◽  
Ji-Sen Shi ◽  
...  

Abstract The effect of LXB-1, an extract from Liriodendron × hybrid, was determined on A549 human lung adenocarcinoma cell lines. Growth inhibition of LXB-1 was analyzed by MTT assay. Cancer cell cycle was measured by flow cytometry. To verify the apoptosis effect of LXB-1 on A549 cells, annexin V/PI double staining assay was performed. The expression levels of proapoptotic proteins were also measured by western blot. The potential mechanisms of LXB-1 inducing apoptosis – the expression and phosphorylation of ERK, p38, JNK and Akt – were investigated by western blot. The IC50 values of LXB-1 on A549 for 24, 48 and 72 h treatment were determined to be 12.97±1.53 μg/mL, 9.55±1.42 μg/mL, and 5.90±0.74 μg/mL, respectively. LXB-1 induced an obvious G2/M cell cycle arrest in A549 cells and resulted in significant cell apoptosis. LXB-1 also increased the cleavage of both caspase-3 and caspase-9, and greatly decreased the protein levels of Bcl-2. Moreover, LXB-1 increased the expression of phosphorylated JNK but decreased the levels of phosphorylated ERK1/2 and Akt. These results suggest that that LXB-1 induced apoptosis through JNK, ERK1/2, and Akt pathways in A549 cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4439-4439
Author(s):  
Bin Wang ◽  
Junichi Tsukada ◽  
Takehiro Higashi ◽  
Takamitsu Mizobe ◽  
Ai Matsuura ◽  
...  

Abstract Activation of c-jun N-terminal kinase (JNK) through c-kit-mediated phosphatidylinositol 3 (PI3) and Src kinase pathways plays an important role in cell proliferation and survival in mast cells. Gain-of-function mutations in c-kit are found in several human neoplasms. Constitutive activation of c-kit has been observed in human mastocytosis, acute myeloid leukemia, lymphoma, germ tumor and gastrointestinal stromal tumor. In the present study, we demonstrate that an anthrapyrazole SP600125, a reversible ATP-competitive inhibitor of JNK inhibits proliferation of human HMC-1 mast cells expressing constitutively activated c-kit mutant. We found that JNK/c-Jun was constitutively activated in HMC-1 cells without stimulation. When spontaneous activation of JNK/c-Jun was inhibited by treatment with SP600125, cell proliferation was suppressed. The concentration which effectively inhibited JNK/c-Jun activity in our experiment had no effect on SCF-induced phosphorylation of Akt or Erk, suggesting that SP600125 specifically inhibited JNK/c-Jun activity in HMC-1 cells. Moreover, we demonstrated that SP600125 induced HMC-1 cell apoptosis in dose- and time-dependent manner. Caspase-3 and PARP were cleaved as early as 12 h after treatment with SP600125, but caspase-9 was not. Also, cell cycle arrest in G1 phase was observed in SP600125 treated cells. Thus, the inhibitory effect of SP600125 on cell proliferation was associated with cell cycle arrest at the G1 phase and apoptosis accompanied by cleavage of caspase-3 and PARP. Caspase-3 inhibitor Z-DEVD-FMK almost completely inhibited SP600125-induced apoptosis of HMC-1 cells. In contrast, caspase-9 inhibitor Z-LEHD-FMK failed to block SP600125-induced apoptosis, suggesting that apoptosis induced by SP600125 was caspase-3 dependent. Following SP600125 treatment, down-regulation of cyclin D3 protein expression, but not p53 was also observed. Take together, JNK/c-Jun is essential for proliferation and survival of HMC-1 cells. The results obtained from the present study suggest the possibility that JNK/c-Jun may be a therapeutic target in diseases associated with c-kit mutant.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Yongli Zhang ◽  
Xiangsheng Wang ◽  
Wei Fang ◽  
Xiaoyan Cai ◽  
Fujiang Chu ◽  
...  

Two oxovanadium(IV) complexes of [VO(msatsc)(phen)], (1) (msatsc = methoxylsalicylaldehyde thiosemicarbazone, phen = phenanthroline) and its novel derivative [VO (4-chlorosatsc)(phen)], (2) (4-chlorosatsc = 4-chlorosalicylaldehyde thiosemicarbazone), have been synthesized and characterized by elemental analysis, IR, ES-MS,1H NMR, and magnetic susceptibility measurements. Their antitumor effects on BEL-7402, HUH-7, and HepG2 cells were studied by MTT assay. The antitumor biological mechanism of these two complexes was studied in BEL-7402 cells by cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay, and detection of mitochondrial membrane potential (ΔΨm). The results showed that the growth of cancer cells was inhibited significantly, and complexes1and2mainly caused in BEL-7402 cells G0/G1 cell cycle arrest and induced apoptosis. Both1and2decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Complex2showed greater antitumor efficiency than that of complex1.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meng Shao ◽  
Zhenqiang He ◽  
Zhixin Yin ◽  
Peihong Ma ◽  
Qian Xiao ◽  
...  

Xihuang pill (XHP), a traditional Chinese herbal formula, has long been used as an effective agent against multiple tumors. The aim of this study is to evaluate the effects of XHP on the growth inhibition and apoptosis in glioblastoma U-87 MG cells. Gas chromatography-mass spectrometry (GC-MS) was performed for constituent analysis of XHP. Cell viability, cell cycle arrest, generation of reactive oxygen species (ROS), and apoptosis were measured by CCK-8 assay, PI/RNase staining, DCFH-DA assay, TUNEL assay, Annexin V-FITC/PI double staining, and JC-1 assay, respectively. The role of XHP in the regulation of Akt/mTOR/FOXO1 interaction was clarified by using Western Blotting (WB), immunofluorescence (IF), pharmacological inhibitor or antioxidant, and siRNA silencing. The results suggested that XHP could inhibit U-87 MG cells growth and arrest cells in S-phase cell cycle significantly and that the generation of ROS, collapse of mitochondrial membrane potential, enhancement of Bax/Bcl-xL ratio, and reduction of the precursor forms of caspase-9 and caspase-3 caused by XHP prompted that a ROS-mediated mitochondria-dependent apoptosis was possibly involved. Furthermore, XHP affected the Akt/mTOR/FOXO1 pathway via inhibiting the phosphorylation of Akt, mTOR, and FOXO1 and increasing both prototype and nuclear translocation of FOXO1. Inhibition of Akt, mTOR, and FOXO1 by specific inhibitors or siRNA could interpose the apoptotic induction. In conclusion, we demonstrate for the first time that XHP may regulate glioblastoma U-87 MG cell apoptosis via ROS-mediated Akt/mTOR/FOXO1 pathway.


2012 ◽  
Vol 20 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Xiao-Hong Zhang ◽  
Nan Zhang ◽  
Jian-Mei Lu ◽  
Qing-Zhong Kong ◽  
Yun-Feng Zhao

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2474-2474
Author(s):  
Piotr Smolewski ◽  
Agnieszka Janus ◽  
Barbara Cebula ◽  
Anna Linke ◽  
Krzysztof Jamroziak ◽  
...  

Abstract Background: Rapamycin (RAPA) is an inhibitor of mTOR kinase pathway. In vitro low doses of this agent induce cell cycle arrest in G1 phase, whereas higher concentrations of RAPA exert proapoptotic effects. Aim: We assessed cytotoxicity of RAPA alone or in combination with cytarabine (cytosine arabinoside, ARA-C) in acute myeloblastic leukemia (AML) cells and in normal lymphocytes obtained from 10 healthy volunteers. Methods: AML cells (in vitro HL-60 cell line and ex vivo leukemic cells) and phytohemaglutynin (PHA)-stimulated normal lymphocytes were treated for 24 – 48 h with 1 ng/ml RAPA alone or in combination with 50 nM cytarabine (Ara-C). Moreover, cells was pre-incubated with RAPA for 24 h and then Ara-C was added for the next 24 h. Untreated cultures and those treated with RAPA, Ara-C or PHA alone served as respective controls. The proapoptotic effect was assessed by Annexin V assay and presented as a percentage of Annexin-V-positive cells (apoptotic index; AI). Cell cycle was analyzed by DNA distribution in propydium iodide/RN-ase stained cells. Cyclin D3, A and E expression was also measured using flow cytometry. Results: Median AI induced in HL-60 cells after 24 h treatment with RAPA+Ara-C (30.1%) was significantly higher than induced by RAPA (7.2%) or Ara-C (18.5%) alone (p=0.002 and p=0.03, respectively). The RAPA+Ara-C combination exerted additive effect (combination index 0.87) in that model. Additional 24 hour pretreatment with RAPA further increased apoptosis (median AI 41.5%, vs. 10.9% after 48 h-RAPA alone). In contrast to leukemic cells, pretreatment of normal PHA-stimulated lymphocytes with RAPA caused their G1 phase cell cycle arrest, with significant decrease in cyclin D3 expression (vs. untreated cells - p<0.001). This resulted in prevention of Ara-C-induced cytotoxicity in healthy lymphocytes, when Ara-C was added for another 24 h. Importantly, that protective effect was reversible when RAPA-treated lymphocytes were rinsed and then cultured in fresh, RAPA-free medium for the next 24 h. In another set of experiments, cells from 12 de novo AML patients were treated with RAPA and Ara-C in above concentrations and time settings. RAPA and Ara-C were administrated to isolated peripheral blood mononuclear cells (PBMC). PBMC were immunophenotyped before and after treatment. Leukemic blasts were marked for individually chosen antigen, most characteristic for leukemic clone in particular patient. Normal CD3+ lymphocytes were also detected. Finally, Annexin V staining was performed. Based on that simultaneous three-color staining the proapoptotic effects of treatment could be measured by flow cytometry in both leukemic blasts and normal CD3+ cells. Thus, we found that pretreatment with RAPA protected majority of CD3+ cells (median of alive cells 85.5%) from Ara-C-induced apoptosis, whereas the leukemic blasts AI was higher than in samples treated with Ara-C. After Ara-C alone CD3+ rate decreased significantly (median 35.1%). Conclusions: Pretreatment with RAPA enhances cytotoxic effect of Ara-C on leukemic cells, but not on healthy lymphocytes. The phenomenon is probably due to reversible arrest of healthy cells in G1 phase of cell cycle by low doses of RAPA, what causes their transient resistance to proapoptotic action of cytostatic drugs. In contrast, the same RAPA doses selectively sensitizes leukemic cells to cytostatics. This suggests, that inhibition of mTOR kinase prior to cytostatics administration may result in selective anti-tumor treatment, with protection of normal cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2895-2903 ◽  
Author(s):  
Lei Zhang ◽  
Zeguo Zhang ◽  
Jing Wang ◽  
Yongzheng Chen ◽  
Fan Chen ◽  
...  

Compound 9k exhibited excellent cytotoxicity, induced apoptosis and G2/M cell cycle arrest, downregulated Pgp expression and up-regulated the expression of p-ERK1/2, p-JNK and p-p38 in K562/ADR cells.


Author(s):  
Mengling Zhang ◽  
Jian Liu ◽  
Rui Zhang ◽  
Zengenni Liang ◽  
Shenghua Ding ◽  
...  

Background: Hypoxia is associated with abnormal cell apoptosis in trophoblast cells, which causes fetal growth restriction and related placental pathologies. Few effective methods for the prevention and treatment of placenta-related diseases exist. Natural products and functional foods have always been a rich source of potential anti-apoptotic drugs. Nobiletin (NOB), a hexamethoxyflavonoid derived from the citrus pomace, shows an anti-apoptotic activity, which is a non-toxic constituent of dietary phytochemicals approved by the Food and Drug Administration. However, their effects on hypoxia-induced human trophoblast cells have not been fully studied. Objective: The aim of this study was to investigate the protective effects of NOB on hypoxia-induced apoptosis of human trophoblast JEG-3 and BeWo cells, and their underlying mechanisms. Design: First, the protective effect of NOB on hypoxia-induced apoptosis of JEG-3 and BeWo cells was studied. Cell viability and membrane integrity were determined by CCK-8 assay and lactate dehydrogenase activity, respectively. Real Time Quantitative PCR (RT-qPCR) and Western blot analysis were used to detect the mRNA and protein levels of HIF1α. Propidium iodide (PI)-labeled flow cytometry was used to detect cell cycle distribution. Cell apoptosis was detected by flow cytometry with Annexin V-FITC and PI double staining, and the expression of apoptosis marker protein cl-PARP was detected by Western blot analysis. Then, the molecular mechanism of NOB against apoptosis was investigated. Computer molecular docking and dynamics were used to simulate the interaction between NOB and p53 protein, and this interaction was verified in vitro by Ultraviolet and visible spectrum (UV-visible spectroscopy), fluorescence spectroscopy and circular dichroism. Furthermore, the changes in the expression of p53 signaling pathway genes and proteins were detected by RT-qPCR and Western blot analysis, respectively. Results: Hypoxia treatment resulted in a decreased cell viability and cell membrane integrity in JEG-3 and BeWo cell lines, and an increased expression of HIF1α, cell cycle arrest in the G1 phase, and massive cell apoptosis, which were alleviated after NOB treatment. Molecular docking and dynamics simulations found that NOB spontaneously bonded to human p53 protein, leading to the change of protein conformation. The intermolecular interaction between NOB and human p53 protein was further confirmed by UV-visible spectroscopy, fluorescence spectroscopy and circular dichroism. After the treatment of 100 μM NOB, a down-regulation of mRNA and protein levels of p53 and p21 and an up-regulation of BCL2/BAX mRNA and protein ratio were observed in JEG-3 cells; however, there was also a down-regulation of mRNA and protein levels observed for p53 and p21 in BeWo cells after the treatment of NOB. The BCL2/BAX ratio of BeWo cells did not change after the treatment of 100 μM NOB. Conclusion: NOB attenuated hypoxia-induced apoptosis in JEG-3 and BeWo cell lines and might be a potential functional ingredient to prevent pregnancy-related diseases caused by hypoxia-induced apoptosis. These findings would also suggest the exploration and utilization of citrus resources, and the development of citrus industry.


2010 ◽  
Vol 28 (8) ◽  
pp. 695-705 ◽  
Author(s):  
J. C. Su ◽  
K. L. Lin ◽  
C. M. Chien ◽  
C. H. Tseng ◽  
Y. L. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document