Preparation, Physical Characterization and Adsorption Properties of Synthesized Co–Ni–Cr Nanocomposites for Highly Effective Removal of Nitrate: Isotherms, Kinetics and Thermodynamic Studies

2020 ◽  
Vol 234 (1) ◽  
pp. 45-62 ◽  
Author(s):  
Somayeh Rahdar ◽  
Abbas Rahdar ◽  
Shahin Ahmadi ◽  
Zhara Mehdizadeh ◽  
Mahmoud Taghavi

AbstractIn the current effort, the Co–Ni–Cr Nanocomposites were synthesized by chemical method and characterized by means of scanning electron micrographs (SEM), X-ray diffraction (XRD), Fourier trans from infra-red (FTIR), and vibration sample magnetization (VSM). In the final step, these nanoparticles were used to study the nitrate removal efficiency from aqueous solution. The effect of important factor including pH, concentration of Nitrate (NO3−) ion, contact time and nanoparticle dose were studied in order to find the optimum adsorption conditions. A maximum of removal of the nitrate was observed at pH 4, initial concentration of 40 mg L−1, amount of nanoparticle of 0.06 g L−1 and contact time 60 min. The adsorption isotherm values were obtained and analyzed using the Langmuir, Frenudlich, Temkin and Dubinin–Radushkevich equations, the Temkin isotherm being the one that showed the best correlation coefficient (R2 = 0.999). In addition to, the adsorption kinetics studied by the pseudo-first-order, pseudo-second-order, Elovich model, Ritchie and intraparticle diffusion models. The experimental data fitted to pseudo-second-order (R2 = 0.999).

2017 ◽  
Vol 9 (3) ◽  
pp. 85
Author(s):  
Iwekumo Agbozu ◽  
Bassey Uwem ◽  
Boisa Ndokiari

Removal of Zn, Pb, Cu and Fe ions from unspent and spent engine oil was studied using Termite soil. Process parameters such as contact time and adsorbent dosage were varied. Values from contact time were used for predicting kinetics equation of their uptake. At optimum time of 40 minutes, percentage adsorption was of the order Fe>Zn>Cu>Pb for both spent and unspent engine oil. Kinetics equation such as Elovich, Intra-particle, Pseudo-first order and Pseudo-second order were tested. Results obtained shows that their sequestering pattern fit into the pseudo-second order kinetics. Initial reaction rates, h (mg/g.min) and α (mg. g-1min-1) for all metal ions obtained from Pseudo-second order and Elovich kinetic models followed the trends Zn>Fe>Cu>Pb and Zn>Fe>Pb>Cu respectively in spent engine oil while for unspent engine oil, the trend was Fe>Zn>Cu>Pb for h (mg/g.min) and Zn>Fe>Pb>Cu for α (mg. g-1min-1). Electrostatic attraction existing on the surface of the adsorbent assisted in the high initial reaction of Zn and Fe ions, implying good affinity of the ions for the adsorbent. Desorption constant ᵦ (g/mg) was of the trend Cu>Pb>Fe>Zn and Cu>Pb>Zn>Fe for spent and unspent engine oils respectively. Intra-particle diffusion constant kid (mgg-1min-1/2) followed a similar pattern, revealing strong binding between Zn and termite soil than any of the metal ion. This pilot research has been able to suggest a kinetic process for uptake of the studied ions from spent and unspent engine oil.


e-Polymers ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Xiu-Juan Wu ◽  
Ji-De Wang ◽  
Li-Qin Cao

AbstractNovel chitosan/diatomite (CS/DM) membranes were prepared by phase inversion technique to remove anionic azo dyes from wastewater. The fabricated composite membranes exhibited the combined advantages of inorganic substances, diatomites, and polysaccharides. These composite membranes were characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. The mechanical properties of the membranes were also evaluated. Adsorption experiments were conducted under varied initial dye concentration, solution pH values, contact time, and adsorbent dosage. The results indicate that pH 3 is the optimal pH value for Orange G adsorption. The CS/DM membranes exhibit the highest adsorption capacity of 588 mg g-1 and removal rate of 94% under an initial dye concentration of 200 mg l-1, contact time of 6 h, and membrane dosage of 8 mg. Langmuir, Freundlich and Redlich-Peterson adsorption models were applied to describe the equilibrium isotherms at different dye concentrations. The equilibrium data was found to be fitted well to the Redlich-Peterson isotherm. Pseudo-first-order and pseudo-second-order kinetics models were used to describe the adsorption of membranes. The adsorption data were well explained by pseudo-second-order models, and also followed by the Elovich model. In addition, these membranes display high adsorption capacity and mechanical performance even after reused for seven times.


2010 ◽  
Vol 113-116 ◽  
pp. 33-36
Author(s):  
Zhi Rong Liu ◽  
Qin Qin Tao ◽  
Chuan Xi Wen

Batch tests were used to investigate the effects of pH and contact time on the adsorption capability of peat. The results indicate that adsorption of uranyl ions on peat increase with increasing pH from 1 to 5. However it takes longer contact time to reach the adsorption equilibrium with increase of pH from 1 to 5. The adsorption process can be described by type 1 of the pseudo-second-order kinetics excellently.


2020 ◽  
Vol 24 (2) ◽  
pp. 329-333
Author(s):  
D.O. Jalija ◽  
A . Uzairu

The objective of this study was to investigate the biosorption of Cu (II) and Ni (II) ions from aqueous solution by calcium alginate beads. The effects of solution pH, contact time and initial metal ion concentration were evaluated. The results showed that maximum Cu (II) removal (93.10%) occurred at pH of 9.0, contact time of 120 minutes and initial ion concentration of 10 mg/L while that of Ni (II) was 94.6%, which was achieved at pH of 8.0, contact time of 120 minutes and initial ion concentration of 10 mg/L. The equilibrium data fitted well to the Langmuir Isotherm indicating that the process is a monolayer adsorption. The coefficients of determination, R2, values for the Langmuir Isotherm were 0.9799 and 0.9822 respectively for Cu (II) and Ni (II) ions. The values of the maximum biosorption capacity, Qo, were 10.79 and 6.25 mgg-1 respectively. The kinetic data also revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots for Cu (II) and Ni (II) were 0.9988 and 0.9969 respectively. These values were higher than those for the pseudo – first order plots. The values of the biosorption capacity qe obtained from the pseudo – second order plots were very close to the experimental values of qe indicating that the biosorption process follows the second order kinetics. This study has therefore shown that calcium alginate beads can be used for the removal of Cu (II) and Ni (II) ions from wastewaters. Keywords: Keywords: Adsorption, Calcium alginate, Isotherm, Langmuir, Pseudo- first order, Pseudo-second order


2020 ◽  
Vol 49 (1) ◽  
pp. 55-62
Author(s):  
Akbar Eslami ◽  
Zahra Goodarzvand Chegini ◽  
Maryam Khashij ◽  
Mohammad Mehralian ◽  
Marjan Hashemi

Purpose A nanosilica adsorbent was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET. Design/methodology/approach The optimum conditions for the highest adsorption performance were determined by kinetic modeling. The adsorbent was used for the adsorption of acetaminophen (ACT), and the parameters affecting the adsorption were discussed like pH, initial concentration, contact time and adsorbent dosage. The adsorbent have been characterized by SEM, XRD and BET analysis. The kinetic models including pseudo-first-order and pseudo-second-order with Langmuir and Freundlich isotherm models were applied to investigate the kinetic and isotherms parameters. Findings The adsorption of ACT increased to around 95% with the increase of nanosilica concentration to 30 g/L. Moreover, the adsorption process of ACT follows the pseudo-second-order kinetics and the Langmuir isotherm with the maximum adsorption capacity of 609 mg/g. Practical implications This study provided a simple and effective way to prepare of nanoadsorbents. This way was conductive to protect environmental and subsequent application for removal of emerging pollutants from aqueous solutions. Originality/value The novelty of the study is synthesizing the morphological and structural properties of nanosilica-based adsorbent (specific surface area, pore volume and size, shape and capability) and improving its removal rate through optimizing the synthesis method; and studying the capability of synthesis of nanosilica-based adsorbent for removal of ACT as a main emerging pharmaceutical water contaminant.


2011 ◽  
Vol 76 (7) ◽  
pp. 1037-1047 ◽  
Author(s):  
Sharain Ling ◽  
Collin Joseph ◽  
How Eng

In this work, dried leaves of Typha angustifolia (TA), also known as the common cattail, were used as an adsorbent in kinetic studies of Pb(II) adsorption from synthetic aqueous solutions. Batch adsorption studies with dried TA leaves were conducted and they were able to adsorb Pb(II) from 100 mL of a 25 mg L-1 Pb(II) solution effectively with the optimized dosage of 0.6 g. Adsorption equilibrium was achieved within 8 hours with an effective removal percentage of 86.04 %. Adsorption kinetics was further evaluated using four kinetic models, i.e., the pseudofirst order, pseudo-second order, intraparticle diffusion and Elovich model. Fitting of the data was performed based on linear regression analysis. The sorption kinetic data fitted best to the pseudo-second order model with an R2 of 0.9979, followed closely by the Elovich model with an R2 of 0.9952. The obtained results showed the adsorption of Pb(II) by TA leaves, which is an abundant biological material, is feasible, cheap and environmentally friendly.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 509-523 ◽  
Author(s):  
Mina Gholipour ◽  
Hassan Hashemipour

In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs) has been investigated as a function of adsorbent dosage, initial Cr(VI) concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI), increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI) ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI) adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI) adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.


Author(s):  
P. H. Kumaraiah

Recently, low-cost adsorbents from sustainable sources are required for the remediation of textile wastewater. Carbonized Orange Peels (COPs) was utilized in remediating colour, Zinc and Copper from textile wastewater. The initial and final pH, colour and trace metals’ composition of the wastewater used were determined for the adsorption processes. Batch adsorption experiment was carried out on COPs and textile wastewater’s mixture to find effects of COP’s dosage, agitation, pH and contact time on the colour, Zinc and Copper’s removal from the wastewater. The adsorption isotherms and kinetic studies were conducted using Langmuir, Freundlich, Pseudo-first-order and Pseudo-second-order models. Findings established that the optimum removal of colour, Zinc and Copper respectively occurred at an adsorbent dosage of 2.5, 0.5 and 3.0 g/100ml, pH of 10, 4 and 2, rotating speed of 100, 250 and 250 rpm, contact time of 40, 60, and 40 mins. The adsorption isotherms revealed only copper adsorption as optimum and well fitted Langmuir isotherm. Pseudo-second-order kinetic model best suited adsorption data of the colour and metal ions with high correlation coefficient (R2) exceeding 0.95. Conclusively, COPs is effective in remediating the colour, copper and zinc from the wastewater, thus, recommended as suitable adsorbent for treatment of textile wastewater


2021 ◽  
Author(s):  
Hassen Agougui ◽  
Youssef Guesmi ◽  
Mahjoub Jabli

In this study, we reported the synthesis of hydroxyapatite modified with biopolymers as λ-carrageenan and sodium alginate, which could be used as effective adsorbents of cationic dyes. Evidence of chemical modification was proved through chemical analysis, Fourier Trans-form Infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and specific surface area. The adsorption process was studied using methylene blue as representative cationic dye. The adsorbed quantity reached, at equilibrium, 142.85 mg/g and 98.23 mg/g using hydroxyapatite-sodium alginate and hydroxyapatite-(λ-carrageenan), respectively. However, it does not exceed 58.8 mg/g in the case of the unmodified hydroxyapatite. The adsorption of methylene blue using hybrid materials complied well with the pseudo-second-order suggesting a chemi-sorption. Freundlich and Langmuir isotherm described well the adsorption mechanism of the hydroxyapatite-(λ-carrageenan) and hydroxyapatite-sodium alginate, respectively. The high capacities of MB removal obtained in this study suggest the potential use of these materials in the treatment from wastewaters.


2021 ◽  
Author(s):  
Dinesh Chandola ◽  
Pooja Thathola ◽  
Ankit Bisht

Abstract Abstract This work investigates the removal of phenol from aqueous solution using Araucaria Columnaris bark (ACB) as biochar. Five different types of biochars were developed through pyrolysis at different temp from 300 to 500°C. The effects of initial concentration, contact time, pH and temperature on adsorption behavior were studied in batch mode for each biochar. The optimum contact time observed for equilibrium condition was 60 mins for every biochar. And, the maximum adsorption followed the order 298 K > 308 K > 318 K. Adsorption equilibrium data were fitted to Langmuir and Freundlich isotherms by non-linear regression method and kinetic data by linear regression method, and fitted to pseudo-first order, pseudo-second order and Intraparticle diffusion models. Adsorption kinetics was reasonably described by pseudo-second order model with R 2 value 0.99. Thermodynamic parameters were also estimated that implied, the adsorption process was spontaneous and exothermic in nature. Study further showed that the acidic pH increased adsorption capacity of biochar but decreases continuously towards basic side. The removal of phenol with prepared biochar was achieved as high as 100 % for ACB-500. The maximum iodine adsorption value of prepared biochar was found to be 453.3 mg/g.


Sign in / Sign up

Export Citation Format

Share Document