scholarly journals Evaluation of multi-walled carbon nanotubes performance in adsorption and desorption of hexavalent chromium

2012 ◽  
Vol 18 (4-1) ◽  
pp. 509-523 ◽  
Author(s):  
Mina Gholipour ◽  
Hassan Hashemipour

In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs) has been investigated as a function of adsorbent dosage, initial Cr(VI) concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI), increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI) ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI) adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI) adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.

2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


2013 ◽  
Vol 295-298 ◽  
pp. 1227-1230 ◽  
Author(s):  
Reyila Abuduwayiti ◽  
Cheng Tun Qu ◽  
Tao Yu ◽  
Bo Yang

Mixed acid processed Multi-walled carbon nanotubes (MWCNTs)were used as adsorbent to adsorb Cu2+ in artificial wastewater in this . In this study, the effect factors of Cu2+ adsorption capacity, such as initial concentration of Cu2+, absorbent contact time and dosage, etc were investigated respectively in the solution at neutral pH. The results show that population of -OH is increased on surface of mixed acid processed MWCNTs; and at condition of 30 °C, pH 6,as the increase in concentration and contact time, there is an increase in adsorption capacity of two adsorbents(processed and unprocessed),and the Cu2+ adsorption rate increased with the increase in adsorbent dosage. In addition, the considered adsorption capacity change was obtained when processed MWCNTs was used.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1959
Author(s):  
Heesoo Woo ◽  
Ilho Kim ◽  
Saerom Park

Determining the degree of the reducing power of multi-walled carbon nanotubes (MWCNTs) and granular activated carbon (GAC) enables their effective application in various fields. In this study, we estimate the reducing power of carbon nanotubes (CNTs) and GAC by measuring the reduction degree of various compounds with different reduction potentials. MWCNTs and GAC materials can reduce Cr(VI), Fe(III) and PMo12O403−, where the reduction potentials range from +1.33 V to +0.65 V. However, no reduced forms of PW12O403− and SiW12O404− compounds were detected, indicating that the reducing power of MWCNTs and GAC is insufficient for reduction potentials in the range +0.218 V to +0.054 V. MWCNTs exhibit a short reduction time (5 min), whereas GAC exhibits a gradually increasing reduction degree of all the compounds assessed until the end of the reaction. This indicates a higher reduction degree than that of MWCNTs systems. Acidic initial pH values favor reduction, and the reduction degree increases as the pH becomes lower than 4.0. Moreover, large quantities of MWCNTs and GAC increase the concentrations of the reduced compounds.


2019 ◽  
Vol 21 (1) ◽  
pp. 64-69

<p>The aim of this study was to evaluate the mercury removal from aqueous solutions by using L-Cysteine functionalized Multi-walled Carbon Nanotubes. The effect of pH, adsorbent dose, contact time and mercury concentration in removal efficiency was evaluated. Multi -walled carbon nanotubes were functionalized with L-cysteine. The Response Surface Methodology (RSM) was used to find the optimum process parameters. The results showed that an increase in contact time, pH and adsorbent dosage resulted in an increase of the adsorption rate. However, removal efficiency decreases by increasing mercury concentration. The highest and lowest removal efficiencies of mercury were 89% and 17%, respectively. The maximum adsorption rate was occurring at 120 min. It is concluded that L-Cysteine functionalized multi-walled carbon nanotubes is an effective adsorbent for removal from aqueous solutions.</p>


2018 ◽  
Vol 107 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Reda R. Sheha ◽  
Saber I. Moussa ◽  
Mohamed A. Attia ◽  
Sedeeq A. Sadeek ◽  
Hanan H. Someda

Abstract Multi-walled carbon nanotubes/strontium hydroxyapatite (MWCNT/SH) composite was synthesized, where CNTs were applied to improve the properties of HAP and increase the reinforcement of the composite. The composite CNTs/Sr-HAP and its precursor Sr-HAP were successfully applied in removal of Co(II) and Eu(III) ions from aqueous solutions. Sorption of Co(II) and Eu(III) onto the synthesized sorbents was investigated as a function of contact time and pH. The synthesized sorbents highly removed the studied radionuclides from their aqueous solutions with necessary time of 6 h to reach equilibrium. The maximum sorption capacity was 33.31 and 48.93 mg g−1 for Co(II) sorption onto Sr-HAP and CNTs/Sr-HAP composite at pH 4.5, while it was 115.74 and 127.11 mg g−1 for sorption of Eu(III) onto Sr-HAP and CNTs/Sr-HAP composite at pH 2.5, respectively. Desorption of Co(II) and Eu(III) from loaded samples was studied using various eluents and maximum recovery was obtained using FeCl3 and HCl solutions. Co(II) was completely separated from Eu(III) by a ratio of 85.1 % using Cd(NO3)2 as an eluent in CNTs/Sr-HAP composite packed column.


Sign in / Sign up

Export Citation Format

Share Document