scholarly journals Ecological risk assessment of heavy metals from cement factory dust

2019 ◽  
Vol 6 (2) ◽  
pp. 129-137
Author(s):  
Firouzeh Yadegarnia Naeini ◽  
Hamidreza Azimzadeh ◽  
Asghar Mosleh Arani ◽  
Ahad Sotoudeh ◽  
Bahman Kian

Background: The release of metals from industrial factories is one of the most important sources ofenvironmental pollution. The present study aimed to determine the concentration of heavy metals likecadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), and lead (Pb) in dust around the cementfactory.Methods: A total of 22 dust samples were collected from areas around the cement factory in Isfahanprovince in spring and summer and transferred to laboratory for chemical digestion. Risk index (RI),integrated pollution index (IPI), mean of contamination degree (mCd), and contamination factor (Cfi)were calculated to determine the contamination status.Results: The concentration of heavy metals in the falling dust around the factory was expressed as Cd<Ni <Pb <Mn <Cr. Pearson correlation showed that there is only a significant negative relationshipbetween the concentration of Cd and the distance from the factory. By increasing the distance from thefactory, the concentration of Cd in dust decreased. The results of falling dust analysis showed that Crhas a high-risk potential in two seasons of spring and summer and Cd has a middle level of pollutionin spring.Conclusion: According to the results, the deposited dust of study area is considered as a polluted dustand it is at higher risk of pollution with Cd and Cr.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 891
Author(s):  
Qian Zhang ◽  
Guilin Han ◽  
Xingliang Xu

Human agricultural activities have resulted in widespread land degradation and soil contamination in the karst areas. However, the effects of reforestation after agricultural abandonment on the mobility risks and contamination of heavy metals have been rarely reported. In the present study, six soil profiles were selected from cropland and abandoned cropland with reforestation in the Puding karst regions of Southwest China. The Community Bureau of Reference (BCR) sequential extraction method was used to evaluate the compositions of different chemical fractions of soil heavy metals, including Fe, Mn, Cr, Zn, Ni, and Cd. The total contents of Cr, Ni, Zn, Cd, and Mn in the croplands were significantly higher than those in the abandoned croplands. For all soils, Cr, Ni, Zn, and Fe were mainly concentrated in the residual fractions (>85%), whereas Mn and Cd were mostly observed in the non-residual fractions (>65%). The non-residual fractions of Cd, Cr, Ni, and Zn in the croplands were higher than those in the abandoned croplands. These results indicated that the content and mobility of soil heavy metals decreased after reforestation. The individual contamination factor (ICF) and risk assessment code (RAC) showed that Cd contributed to considerable contamination of karst soils. The global contamination factor (GCF) and potential ecological risk index (RI) suggested low contamination and ecological risk of the investigated heavy metals in the croplands, moreover they can be further reduced after reforestation.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2019 ◽  
Vol 6 (3) ◽  
pp. 191-202
Author(s):  
Md. Abu Rayhan Khan ◽  
Mosummath Hosna Ara ◽  
Palash Kumar Dhar

Background: Contamination of soil with heavy metals is an alarming issue around the world. Therefore, this study aimed to assess the contamination status of heavy metals in the soil of Mongla industrial area, Bangladesh. Methods: Soil samples were randomly collected from 20 sites and digested by wet digestion method. The concentrations of heavy metals (Mn, Fe, Cu, Zn, Cd, and Pb) were determined using atomic absorption spectrophotometer (AAS). The quality of soil was assessed based on the contamination factor (CF), geoaccumulation index (Igeo), enrichment factor (EF), and ecological risk index factor (ERIF) analyses. Results: The average concentrations of Mn, Fe, Cu, Zn, Cd, and Pb were obtained to be 258.08±51.61, 3736.90±322.17, 19.55±6.49, 66.76 ± 18.32, 0.59±0.13, and 10.40 ± 1.49 mg kg-1, respectively, which were below the permissible limit. The highest value of CF (0.74±0.16), Igeo (0.35±0.34), EF (24.86±6.27), and PERIF (22.11±4.81) was observed for Cd. The pollution of CF, Igeo, EF, and ERIF was classified as very severely polluted, unpolluted to moderately polluted, strongly to extremely polluted, and slightly polluted, respectively, with these heavy metals due to anthropogenic activities. One-way ANOVA indicated a significant difference between Zn and Cd concentrations (P<0.05), whereas Pearson correlation showed a positive correlation between Zn-Pb (P=0.01) and Fe-Zn (P=0.05). Conclusion: There are different classes of contamination with heavy metals in the study area. Therefore, necessary steps should be taken and people’s awareness of the soil pollution should be raised.


2021 ◽  
Author(s):  
Yan Li ◽  
Dike Feng ◽  
Meiying Ji ◽  
Zhanpeng Li ◽  
Ruocheng Zhang ◽  
...  

Abstract With the rapid development of China's industrial economy, heavy metals and other pollutants continue to accumulate in the environment, which has created serious threats for the ecological environment and human health. To comprehensively evaluate the ecological risks from heavy metals in the soil in Nanjing, China, as well as the status of the risks to human health, this study randomly collected 50 surface soil samples, and the contents of Al, Ca, Fe, Mg, Mn, Ni, Ti, Cd, Cr, Cu, Pb and Zn in the samples were determined, combined with the ecological risk index and the USEPA health risk assessment model for a comprehensive risk assessment of soil heavy metals in Nanjing. The results show that there has been heavy metal enrichment of Mn, Pb, Zn and other heavy metals in the research area in Nanjing city, and the variation coefficients of Pb and Cu are distinctly large; that is, the distribution of Pb and Cu in the research area shows a great fluctuation. These elements are all slightly polluting, among which the Cu heavy metal pollution degree is different, and Pb element pollution is the most serious. Children are at a high risk of exposure in various ways, among which Pb and Cu elements have a high risk of causing non-carcinogenic issues. Overall, Pb and Cu in Nanjing are important risk elements that should be monitored and controlled. The results of the correlation analysis showed that the content changes of Pb, Zn and Cu; Ni, Ti and Fe; and Zn and Pb had extremely significant correlations, indicating that they may have the same source; while Ti and Ca, Ti and Cu, and Pb and Zn showed opposite changes, indicating that their concentrations were inversely related. The results of the principal component analysis showed that industrial sources in Nanjing contributed the most heavy metals, reaching 34.4%. The second largest source was from parent material and fertilizer, which contributed 32.3% and 19.6%, respectively. The sources with the lowest contributions were from weathering and deposition, which reached 13.7%.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12430
Author(s):  
Zhe Xu ◽  
Wenbao Mi ◽  
Nan Mi ◽  
Xingang Fan ◽  
Ying Tian ◽  
...  

China’s desert steppe is the transition zone between the grasslands in central China and the arid desert. Ecological security in this region has long been a subject of debate, both in the local and academic communities. Heavy metals and other pollutants are readily released during industrial production, combustion, and transportation, aggravating the vulnerability of the desert steppes. To understand the impact of industrial activiteis on the heavy metal content of dust fall in the desert steppe, a total of 37 dust fall samples were collected over 90 days. An inductively-coupled plasma mass spectrometer (NexION 350X) was used to measure the concentration of heavy metals Cu, Cd, Cr, Pb, Mn, Co, and Zn in the dust. Using comprehensive pollution index and multivariate statistical analysis methods, we explored the characteristics and sources of heavy metal pollution. We also quantitatively assessed the carcinogenic risks of heavy metals resulting from dust reduction with the help of health risk assessment models. The heavy metals’ comprehensive pollution index values in the study area’s dust fall were ranked as follows: Zn > Cd > Pb > Mn > Cu > Co > Cr. Among these, Zn, Cd, and Pb were significant pollution factors in the study area, and were affected by industrial production and transportation. The high pollution index was concentrated in the north of the research industrial park and on both sides of a highway. The seven heavy metals’ total non-carcinogenic risk index (HI) values were ranked as follows: Mn > Co > Pb > Zn > Cr > Cu > Cd (only the HI of Mn was greater than one). Excluding Mn, the non-carcinogenic and carcinogenic risk index values of the other six heavy metals were within acceptable ranges. Previous studies have also shown that industrial transportation and production have had a significant impact on the heavy metal content of dust fall in the desert steppe.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 614
Author(s):  
Muhammad Faisal ◽  
Zening Wu ◽  
Huiliang Wang ◽  
Zafar Hussain ◽  
Chenyang Shen

Heavy metals in road dust pose a significant threat to human health. This study investigated the concentrations, patterns, and sources of eight hazardous heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, and Hg) in the street dust of Zhengzhou city of PR China. Fifty-eight samples of road dust were analyzed based on three methods of risk assessment, i.e., Geo-Accumulation Index (Igeo), Potential Ecological Risk Assessment (RI), and Nemerow Synthetic Pollution Index (PIN). The results exhibited higher concentrations of Hg and Cd 14 and 7 times higher than their background values, respectively. Igeo showed the risks of contamination in a range of unpolluted (Cr, Ni) to strongly polluted (Hg and Cd) categories. RI came up with the contamination ranges from low (Cr, Ni, Cu, Zn, As, and Pb) to extreme (Cd and Hg) risk of contamination. The risk of contamination based on PIN was from safe (Cu, As, and Pb) to seriously high (Cd and Hg). The results yielded by PIN indicated the extreme risk of Cd and Hg in the city. Positive Matrix Factorization was used to identify the sources of contamination. Factor 1 (vehicular exhaust), Factor 2 (coal combustion), Factor 3 (metal industry), and Factor 4 (anthropogenic activities), respectively, contributed 14.63%, 35.34%, 36.14%, and 13.87% of total heavy metal pollution. Metal’s presence in the dust is a direct health risk for humans and warrants immediate and effective pollution control and prevention measures in the city.


Author(s):  
Songtao Wang ◽  
Zongjun Gao ◽  
Yuqi Zhang ◽  
Hairui Zhang ◽  
Zhen Wu ◽  
...  

This study investigated the characteristics and sources of heavy metals in a soil–ginger system and assessed their health risks. To this end, 321 topsoil samples and eight soil samples from a soil profile, and 18 ginger samples with root–soil were collected from a ginger-planting area in the Jing River Basin. The average concentration of heavy metals in the topsoil followed the order: Cr > Zn > Pb > Ni > Cu > As > Cd > Hg. In the soil profile, at depths greater than 80 cm, the contents of Cr, Ni, and Zn tended to increase with depth, which may be related to the parent materials, whereas As and Cu contents showed little change. In contrast, Pb content decreased sharply from top to bottom, which may be attributable to external environmental and anthropogenic factors. Multivariate statistical analysis showed that Cr, Ni, Cu, Zn, and Cd contents in soil are affected by natural sources, Pb and As contents are significantly affected by human activities, and Hg content is affected by farmland irrigation. Combined results of the single pollution index (Pi), geo-accumulation index (Igeo), and potential ecological risk assessment (Ei and RI) suggest that soil in the study area is generally not polluted by heavy metals. In ginger, Zn content was the highest (2.36 mg/kg) and Hg content was the lowest (0.0015 mg/kg). Based on the bioconcentration factor, Cd and Zn have high potential for enrichment in ginger. With reference to the limit of heavy metals in tubers, Cr content in ginger exceeds the standard in the study area. Although Cr does not accumulate in ginger, Cr enrichment in soil significantly increases the risk of excessive Cr content in ginger.


2021 ◽  
Vol 9 (5) ◽  
pp. 473
Author(s):  
Magda M. Abou El-Safa ◽  
Mohamed Gad ◽  
Ebrahem M. Eid ◽  
Ashwaq M. Alnemari ◽  
Mohammed H. Almarshadi ◽  
...  

The present study focuses on the risk assessment of heavy metal contamination in aquatic ecosystems by evaluating the current situation of heavy metals in seven locations (North Amer El Bahry, Amer, Bakr, Ras Gharib, July Water Floud, Ras Shokeir, and El Marageen) along the Suez Gulf coast that are well-known representative sites for petroleum activities in Egypt. One hundred and forty-six samples of surface sediments were carefully collected from twenty-seven profiles in the intertidal and surf zone. The hydrochemical parameters, such as pH and salinity (S‰), were measured during sample collection. The mineralogy study was carried out by an X-ray diffractometer (XRD), and the concentrations of Al, Mn, Fe, Cr, Cu, Co, Zn, Cd, and Pb were determined using inductively coupled plasma mass spectra (ICP-MS). The ecological risks of heavy metals were assessed by applying the contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI). The mineralogical composition mainly comprised quartz, dolomites, calcite, and feldspars. The average concentrations of the detected heavy metals, in descending order, were Al > Fe > Mn > Cr > Pb > Cu > Zn > Ni > Co > Cd. A non-significant or negative relationship between the heavy metal concentration in the samples and their textural grain size characteristics was observed. The coastal surface sediment samples of the Suez Gulf contained lower concentrations of heavy metals than those published for other regions in the world with petroleum activities, except for Al, Mn, and Cr. The results for the CF, EF, and Igeo showed that Cd and Pb have severe enrichment in surface sediment and are derived from anthropogenic sources, while Al, Mn, Fe, Cr, Co, Ni, Cu, and Zn originate from natural sources. By comparison, the PLI and RI results indicate that the North Amer El Bahry and July Water Floud are considered polluted areas due to their petroleum activities. The continuous monitoring and assessment of pollutants in the Suez Gulf will aid in the protection of the environment and the sustainability of resources.


2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Sign in / Sign up

Export Citation Format

Share Document