The Nature and Annealing Behavior of Irradiation Damage in Molybdenum

Author(s):  
B. L. Eyre ◽  
A. C. Roberts
2010 ◽  
Vol 22 (11) ◽  
pp. 2724-2728
Author(s):  
高博 Gao Bo ◽  
余学峰 Yu Xuefeng ◽  
任迪远 Ren Diyuan ◽  
王义元 Wang Yiyuan ◽  
李豫东 Li Yudong ◽  
...  

2011 ◽  
Vol 414 (2) ◽  
pp. 174-178 ◽  
Author(s):  
Masahide Takano ◽  
Mitsuo Akabori ◽  
Yasuo Arai

Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Author(s):  
Sengshiu Chung ◽  
Peggy Cebe

We are studying the crystallization and annealing behavior of high performance polymers, like poly(p-pheny1ene sulfide) PPS, and poly-(etheretherketone), PEEK. Our purpose is to determine whether PPS, which is similar in many ways to PEEK, undergoes reorganization during annealing. In an effort to address the issue of reorganization, we are studying solution grown single crystals of PPS as model materials.Observation of solution grown PPS crystals has been reported. Even from dilute solution, embrionic spherulites and aggregates were formed. We observe that these morphologies result when solutions containing uncrystallized polymer are cooled. To obtain samples of uniform single crystals, we have used two-stage self seeding and solution replacement techniques.


Author(s):  
Yoshinori Fujiyoshi

The resolution of direct images of biological macromolecules is normally restricted to far less than 0.3 nm. This is not due instrumental resolution, but irradiation damage. The damage to biological macromolecules may expect to be reduced when they are cooled to a very low temperature. We started to develop a new cryo-stage for a high resolution electron microscopy in 1983, and successfully constructed a superfluid helium stage for a 400 kV microscope by 1986, whereby chlorinated copper-phthalocyanine could be photographed to a resolution of 0.26 nm at a stage temperature of 1.5 K. We are continuing to develop the cryo-microscope and have developed a cryo-microscope equipped with a superfluid helium stage and new cryo-transfer device.The New cryo-microscope achieves not only improved resolution but also increased operational ease. The construction of the new super-fluid helium stage is shown in Fig. 1, where the cross sectional structure is shown parallel to an electron beam path. The capacities of LN2 tank, LHe tank and the pot are 1400 ml, 1200 ml and 3 ml, respectively. Their surfaces are placed with gold to minimize thermal radiation. Consumption rates of liquid nitrogen and liquid helium are 170 ml/hour and 140 ml/hour, respectively. The working time of this stage is more than 7 hours starting from full LN2 and LHe tanks. Instrumental resolution of our cryo-stage cooled to 4.2 K was confirmed to be 0.20 nm by an optical diffraction pattern from the image of a chlorinated copper-phthalocyanine crystal. The image and the optical diffraction pattern are shown in Fig. 2 a, b, respectively.


2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


Author(s):  
Wei-Chih Wang ◽  
Jian-Shing Luo

Abstract In this paper, we revealed p+/n-well and n+/p-well junction characteristic changes caused by electron beam (EB) irradiation. Most importantly, we found a device contact side junction characteristic is relatively sensitive to EB irradiation than its whole device characteristic; an order of magnitude excess current appears at low forward bias region after 1kV EB acceleration voltage irradiation (Vacc). Furthermore, these changes were well interpreted by our Monte Carlo simulation results, the Shockley-Read Hall (SRH) model and the Generation-Recombination (G-R) center trap theory. In addition, four essential examining items were suggested and proposed for EB irradiation damage origins investigation and evaluation. Finally, by taking advantage of the excess current phenomenon, a scanning electron microscope (SEM) passive voltage contrast (PVC) fault localization application at n-FET region was also demonstrated.


2019 ◽  
Vol 19 (7) ◽  
pp. 3777-3784
Author(s):  
Jakub Rozbořil ◽  
Katharina Broch ◽  
Roland Resel ◽  
Ondřej Caha ◽  
Filip Münz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document