scholarly journals Ferroptosis Resistance in Cancer: An Emerging Crisis of New Hope

2021 ◽  
Author(s):  
Daiyun Xu ◽  
Yonghui Lü ◽  
Yongxiao Li ◽  
Shengbin Li ◽  
Zhe Wang ◽  
...  

Ferroptosis, a new mode of nonapoptotic cell death, is increasingly recognized as a new hope in overcoming resistance to chemotherapy in cancer. Both canonical and noncanonical pathways can trigger ferroptosis execution via an iron-dependent lethal lipid peroxidation manner. However, growing evidence has shown that some cancer cells can survive ferroptotic stress through metabolic remodeling as regards iron metabolism, anti-oxidative systems, and lipid metabolism. In addition to the well-known roles of the XC-/glutathione/glutathione peroxidase 4 (XC–/GSH/GPX4) axis in blocking ferroptosis, several recently identified pathways, including the Mevalonate-ferroptosis suppressor protein 1 (MVA-FSP1) axis, the GTP cyclohydrolase 1-Tetrahydrobiopterin (GCH1-BH4) axis, the peroxisome-ether-phospholipid axis, the acyl- CoA synthetase long-chain family member 3-monounsaturated fatty acids (ACSL3-MUFA) axis, and the Liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) axis, can negatively regulate susceptibility to ferroptosis. Prominin-2, a newly identified ferroptosis-modulating protein, also drives cancer cells to escape from ferroptosis induction. These findings collectively led to major challenges and opportunities in the development of novel therapies that target the ferroptosis resistance of cancer cells.

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 862 ◽  
Author(s):  
Nurbubu T. Moldogazieva ◽  
Innokenty M. Mokhosoev ◽  
Alexander A. Terentiev

It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatidyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1792
Author(s):  
Debashri Manna ◽  
Devanand Sarkar

Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.


2019 ◽  
Vol 294 (46) ◽  
pp. 17239-17248
Author(s):  
Karin Bartel ◽  
Rolf Müller ◽  
Karin von Schwarzenberg

The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and nontumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In nonmalignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a prosurvival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase–independent AMPK induction in tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a prosurvival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species production. We could attribute the prosurvival effects to AMPK's ability to maintain redox homeostasis by inhibiting reactive oxygen species production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.


2012 ◽  
Vol 104 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Toshio Kubo ◽  
Nagio Takigawa ◽  
Masahiro Osawa ◽  
Daijiro Harada ◽  
Takashi Ninomiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document