scholarly journals Temporal and Spatial Vegetation Index Variability and Response to Temperature and Precipitation in the Qinghai-Tibet Plateau Using GIMMS NDVI

2020 ◽  
Vol 29 (6) ◽  
pp. 4385-4395
Author(s):  
Tao Wang ◽  
Meihuan Yang ◽  
Suijun Yan ◽  
Guangpo Geng ◽  
Qihu Li ◽  
...  
2021 ◽  
Vol 13 (23) ◽  
pp. 4952
Author(s):  
Xigang Liu ◽  
Yaning Chen ◽  
Zhi Li ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

Phenological change is an emerging hot topic in ecology and climate change research. Existing phenological studies in the Qinghai–Tibet Plateau (QTP) have focused on overall changes, while ignoring the different characteristics of changes in different regions. Here, we use the Global Inventory Modeling and Mapping Studies (GIMMS3g) normalized difference vegetation index (NDVI) dataset as a basis to discuss the temporal and spatial changes in vegetation phenology in the Qinghai–Tibet Plateau from 1982 to 2015. We also analyze the response mechanisms of pre-season climate factor and vegetation phenology and reveal the driving forces of the changes in vegetation phenology. The results show that: (1) the start of the growing season (SOS) and the length of the growing season (LOS) in the QTP fluctuate greatly year by year; (2) in the study area, the change in pre-season precipitation significantly affects the SOS in the northeast (p < 0.05), while, the delay in the end of the growing season (EOS) in the northeast is determined by pre-season air temperature and precipitation; (3) pre-season precipitation in April or May is the main driving force of the SOS of different vegetation, while air temperature and precipitation in the pre-season jointly affect the EOS of different vegetation. The differences in and the diversity of vegetation types together lead to complex changes in vegetation phenology across different regions within the QTP. Therefore, addressing the characteristics and impacts of changes in vegetation phenology across different regions plays an important role in ecological protection in this region.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingyan Xie ◽  
Jianping Li ◽  
Yufei Zhao

The Qinghai-Tibet Plateau (QTP) holds massive freshwater resources and is one of the most active regions in the world with respect to the hydrological cycle. Soil moisture (SM) plays a critical role in hydrological processes and is important for plant growth and ecosystem stability. To investigate the relationship between climatic factors (air temperature and precipitation) and SM during the growing season in various climate zones on the QTP, data from three observational stations were analyzed. The results showed that the daily average (Tave) and minimum air temperatures (Tmin) significantly influenced SM levels at all depths analyzed (i.e., 10, 20, 30, 40, and 50 cm deep) at the three stations, and Tmin had a stronger effect on SM than did Tave. However, the daily maximum air temperature (Tmax) generally had little effect on SM, although it had showed some effects on SM in the middle and deeper layers at the Jiali station. Precipitation was an important factor that significantly influenced the SM at all depths at the three stations, but the influence on SM in the middle and deep layers lagged the direct effect on near-surface SM by 5–7 days. These results suggest that environment characterized by lower temperatures and higher precipitation may promote SM conservation during the growing season and in turn support ecosystem stability on the QTP.


2015 ◽  
Vol 12 (23) ◽  
pp. 6853-6868 ◽  
Author(s):  
T. Li ◽  
W. Zhang ◽  
Q. Zhang ◽  
Y. Lu ◽  
G. Wang ◽  
...  

Abstract. Natural wetlands are among the most important sources of atmospheric methane and thus important for better understanding the long-term temporal variations in the atmospheric methane concentration. During the last 60 years, wetlands have experienced extensive conversion and impacts from climate warming which might result in complicated temporal and spatial variations in the changes of the wetland methane emissions. In this paper, we present a modeling framework, integrating CH4MODwetland, TOPMODEL, and TEM models, to analyze the temporal and spatial variations in CH4 emissions from natural wetlands (including inland marshes/swamps, coastal wetlands, lakes, and rivers) in China. Our analysis revealed a total increase of 25.5 %, averaging 0.52 g m−2 per decade, in the national CH4 fluxes from 1950 to 2010, which was mainly induced by climate warming. Larger CH4 flux increases occurred in northeastern, northern, and northwestern China, where there have been higher temperature rises. However, decreases in precipitation due to climate warming offset the increment of CH4 fluxes in these regions. The CH4 fluxes from the wetland on the Qinghai–Tibet Plateau exhibited the lowest CH4 increase (0.17 g m−2 per decade). Although climate warming has accelerated CH4 fluxes, the total amount of national CH4 emissions decreased by approximately 2.35 Tg (1.91–2.81 Tg), i.e., from 4.50 Tg in the early 1950s to 2.15 Tg in the late 2000s, due to the wetland loss totalling 17.0 million ha. Of this reduction, 0.26 Tg (0.24–0.28 Tg) was derived from lakes and rivers, 0.16 Tg (0.13–0.20 Tg) from coastal wetlands, and 1.92 Tg (1.54–2.33 Tg) from inland wetlands. Spatially, northeastern China contributed the most to the total reduction, with a loss of 1.68 Tg. The wetland CH4 emissions reduced by more than half in most regions in China except for the Qinghai–Tibet Plateau, where the CH4 decrease was only 23.3 %.


2021 ◽  
Vol 13 (19) ◽  
pp. 10488
Author(s):  
Yiru Jia ◽  
Jifu Liu ◽  
Lanlan Guo ◽  
Zhifei Deng ◽  
Jiaoyang Li ◽  
...  

Slope geohazards, which cause significant social, economic and environmental losses, have been increasing worldwide over the last few decades. Climate change-induced higher temperatures and shifted precipitation patterns enhance the slope geohazard risks. This study traced the spatial transference of slope geohazards in the Qinghai-Tibet Plateau (QTP) and investigated the potential climatic factors. The results show that 93% of slope geohazards occurred in seasonally frozen regions, 2.6% of which were located in permafrost regions, with an average altitude of 3818 m. The slope geohazards are mainly concentrated at 1493–1988 m. Over time, the altitude of the slope geohazards was gradually increased, and the mean altitude tended to spread from 1984 m to 2562 m by 2009, while the slope gradient varied only slightly. The number of slope geohazards increased with time and was most obvious in spring, especially in the areas above an altitude of 3000 m. The increase in temperature and precipitation in spring may be an important reason for this phenomenon, because the results suggest that the rate of air warming and precipitation at geohazard sites increased gradually. Based on the observation of the spatial location, altitude and temperature growth rate of slope geohazards, it is noted that new geohazard clusters (NGCs) appear in the study area, and there is still a possibility of migration under the future climate conditions. Based on future climate forecast data, we estimate that the low-, moderate- and high-sensitivity areas of the QTP will be mainly south of 30° N in 2030, will extend to the south of 33° N in 2060 and will continue to expand to the south of 35° N in 2099; we also estimate that the proportion of high-sensitivity areas will increase from 10.93% in 2030 to 14.17% in 2060 and 17.48% in 2099.


2021 ◽  
Author(s):  
Yujie Li ◽  
Cunjie Zhang ◽  
Zhenchao Li ◽  
Liwei Yang ◽  
Xiao Jin ◽  
...  

Abstract Shallow soil refers to the soil layer within 50 cm underground. Shallow soil temperature (ST) affects many processes that occur in the soil. Therefore, the study of shallow ST is of great significance in understanding energy, hydrological cycles and climate change. This work collected the observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020, analyzed the ST as well as its temporal and spatial change characteristics at different levels. The results show that: 1) The shallow ST has a gradually increasing trend from north to south, from west to east. From the perspective of time characteristics, the increasing trend is obvious. The temperature increase of 0–20 cm (the surface layer of the shallow soil) is roughly the same. The average annual is 9.15–9.57 ℃, the interdecadal variabilities are 0.49–0.53 K/10a. The average annual of 40 cm (the bottom layer) is 8.69 ℃, the interdecadal variability reaches by 0.98 K/10a; 2) Judging from the 12 regions of 20 cm, the temperature increase trend is obvious, but there are certain regional differences. The average value ranges from 4.3 ℃ (region 4, Qaidam Plateau) to 18.1 ℃ (region 10, Southeast Qinghai-Tibet Plateau), the difference is nearly 14 K. The standard deviation ranges from 0.38 K (region 10) to 0.82 K (region 11, Northern Qiangtang Plateau); 3) The results of the reanalysis data are lower than the observational data. This work is significant for understanding the characteristics of the ST evolution and the land-atmosphere interaction on the Qinghai-Tibet Plateau.


2016 ◽  
Vol 10 (4) ◽  
pp. 1591-1603 ◽  
Author(s):  
Xicai Pan ◽  
Yanping Li ◽  
Qihao Yu ◽  
Xiaogang Shi ◽  
Daqing Yang ◽  
...  

Abstract. Seasonally variable thermal conductivity in active layers is one important factor that controls the thermal state of permafrost. The common assumption is that this conductivity is considerably lower in the thawed than in the frozen state, λt/λf < 1. Using a 9-year dataset from the Qinghai–Tibet Plateau (QTP) in conjunction with the GEOtop model, we demonstrate that the ratio λt/λf may approach or even exceed 1. This can happen in thick (> 1.5 m) active layers with strong seasonal total water content changes in the regions with summer-monsoon-dominated precipitation pattern. The conductivity ratio can be further increased by typical soil architectures that may lead to a dry interlayer. The unique pattern of soil hydraulic and thermal dynamics in the active layer can be one important contributor for the rapid permafrost warming at the study site. These findings suggest that, given the increase in air temperature and precipitation, soil hydraulic properties, particularly soil architecture in those thick active layers must be properly taken into account in permafrost models.


2020 ◽  
Vol 12 (24) ◽  
pp. 4138
Author(s):  
Xingna Lin ◽  
Jianzhi Niu ◽  
Ronny Berndtsson ◽  
Xinxiao Yu ◽  
Linus Zhang ◽  
...  

Vegetation is an important component of the terrestrial ecosystem that plays an essential role in the exchange of water and energy in climate and biogeochemical cycles. This study investigated the spatiotemporal variation of normalized difference vegetation index (NDVI) in northern China using the GIMMS-MODIS NDVI during 1982–2018. We explored the dominant drivers of NDVI change using regression analyses. Results show that the regional average NDVI for northern China increased at a rate of 0.001 year−1. NDVI improved and degraded area corresponded to 36.1% and 9.7% of the total investigated area, respectively. Climate drivers were responsible for NDVI change in 46.2% of the study area, and the regional average NDVI trend in the region where the dominant drivers were temperature (T), precipitation (P), and the combination of precipitation and temperature (P&T), increased at a rate of 0.0028, 0.0027, and 0.0056 year−1, respectively. We conclude that P has positive dominant effects on NDVI in the subregion VIAiia, VIAiic, VIAiib, VIAib of temperate grassland region, and VIIBiia of temperate desert region in northern China. T has positive dominant effects on NDVI in the alpine vegetation region of Qinghai Tibet Plateau. NDVI is negatively dominated by T in the subregion VIIBiib, VIIBib, VIIAi, and VIIBi of temperate desert regions. Human activities affect NDVI directly by reforestation, especially in Shaanxi, Shanxi, and Hebei provinces.


Sign in / Sign up

Export Citation Format

Share Document