SPICE Simulation of the Propagating Wave and the Switching Solutions in a Ring of Coupled Hard-Type Oscillator Systems

2014 ◽  
Vol 2 ◽  
pp. 14-17
Author(s):  
Kyohei Kamiyama ◽  
Isao Imai ◽  
Tetsuro Endo
Keyword(s):  
Author(s):  
N. Kuji ◽  
T. Takeda ◽  
S. Nakamura ◽  
Y. Komine

Abstract A new logic-model derivation method for leak faults observed by light-emission microscopy (LEM) or in liquid-crystal analysis (LCA) has been developed to verify those faults by comparing them with failures observed on an LSI tester. Since CMOS devices display various kinds of faulty behavior depending on leak resistance, it is essential to include the effects of this resistance in logic models. Considering that the resistance of leaks observed in LEM and LCA ranges from 10 to 10,000 ohm, the new logic models have been derived so that the leak fault could be easily incorporated into logic simulators without SPICE simulation. The feasibility of the proposed method has been demonstrated by using it to diagnose LEM and LCA faults causing logic failure in a 20k-gate logic LSI circuit.


2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 30242-30255
Author(s):  
Dalibor Biolek ◽  
Zdenek Kolka ◽  
Viera Biolkova ◽  
Zdenek Biolek ◽  
Shahar Kvatinsky

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1286
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak

This paper concerns the problem of modelling electrical, thermal and optical properties of multi-colour power light-emitting diodes (LEDs) situated on a common PCB (Printed Circuit Board). A new form of electro-thermo-optical model of such power LEDs is proposed in the form of a subcircuit for SPICE (Simulation Program with Integrated Circuits Emphasis). With the use of this model, the currents and voltages of the considered devices, their junction temperature and selected radiometric parameters can be calculated, taking into account self-heating phenomena in each LED and mutual thermal couplings between each pair of the considered devices. The form of the formulated model is described, and a manner of parameter estimation is also proposed. The correctness and usefulness of the proposed model are verified experimentally for six power LEDs emitting light of different colours and mounted on an experimental PCB prepared by the producer of the investigated devices. Verification was performed for the investigated diodes operating alone and together. Good agreement between the results of measurements and computations was obtained. It was also proved that the main thermal and optical parameters of the investigated LEDs depend on a dominant wavelength of the emitted light.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 728
Author(s):  
Milagrosa González Fernández de Castro ◽  
Yolanda Martín Álvarez ◽  
Juan José Moreno-Labella ◽  
Miguel Panizo-Laiz ◽  
Benito del Río

The Ni-hard alloys white-cast irons are generally used for high wear work. Among them, those with better impact resistance because of its low carbon content compared to the rest of the family, are studied in this paper. One experimental technique of characterizing the metallic materials is the microstructural study. Several metallographic attacks intended to reveal qualitatively each microconstituent that forms the alloy, as well as the segregation and solidification structure of casting, are studied in this article. The use of color metallography is fundamental in this case to distinguish clearly the microconstituents. The main objective of this paper is to propose a series of attacks that identify each one of the microconstituents present in the alloy that has not been reported up to date.


2017 ◽  
Vol 43 (6) ◽  
pp. 670-682 ◽  
Author(s):  
V. F. Rusakov ◽  
V. V. Chabanenko ◽  
A. Nabiałek ◽  
O. M. Chumak

Sign in / Sign up

Export Citation Format

Share Document