scholarly journals Bacterial-viral interactions in the sea surface microlayer of a black carbon-dominated tropical coastal ecosystem (Halong Bay, Vietnam)

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
A.S. Pradeep Ram ◽  
X. Mari ◽  
J. Brune ◽  
J.P. Torréton ◽  
V.T. Chu ◽  
...  

Increasing human activity has raised concerns about the impact of deposition of anthropogenic combustion aerosols (i.e., black carbon; BC) on marine processes. The sea surface microlayer (SML) is a key gate for the introduction of atmospheric BC into the ocean; however, relatively little is known of the effects of BC on bacteria-virus interactions, which can strongly influence microbially mediated processes. To study the impact of BC on bacteria-virus interactions, field investigations involving collection from the SML and underlying water were carried out in Halong Bay (Vietnam). Most inorganic nutrient concentrations, as well as dissolved organic carbon, were modestly but significantly higher (p = 0.02–0.05) in the SML than in underlying water. The concentrations of particulate organic carbon (though not chlorophyll a) and of total particulate carbon, which was composed largely of particulate BC (mean = 1.7 ± 6.4 mmol L–1), were highly enriched in the SML, and showed high variability among stations. On average, microbial abundances (both bacteria and viruses) and bacterial production were 2- and 5fold higher, respectively, in the SML than in underlying water. Significantly lower bacterial production (p < 0.01) was observed in the particulate fraction (>3 µm) compared to the bulk sample, but our data overall suggest that bacterial production in the SML was stimulated by particulate BC. Higher bacterial production in the SML than in underlying water supported high viral lytic infection rates (from 5.3 to 30.1%) which predominated over percent lysogeny (from undetected to 1.4%). The sorption of dissolved organic carbon by black carbon, accompanied by the high lytic infection rate in the black carbon-enriched SML, may modify microbially mediated processes and shift the net ecosystem metabolism (ratio of production and respiration) to net heterotrophy and CO2 production in this critical layer between ocean and atmosphere.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Xavier Mari ◽  
Thuoc Chu Van ◽  
Benjamin Guinot ◽  
Justine Brune ◽  
Jean-Pierre Lefebvre ◽  
...  

Emissions of black carbon (BC), a product of incomplete combustion of fossil fuels, biofuels and biomass, are high in the Asia-Pacific region, yet input pathways and rates to the ocean are not well constrained. Atmospheric and riverine inputs of BC in Halong Bay (Vietnam), a hotspot of atmospheric BC, were studied at monthly intervals during one year. Climate in Halong Bay is governed by the monsoon regime, characterized by a northeast winter monsoon (dry season) and southeast summer monsoon (wet season). During the dry season, atmospheric BC concentrations averaged twice those observed during the wet season. In the sea surface microlayer (SML) and underlying water (ULW), concentrations of particulate BC (PBC) averaged 539 and 11 µmol C L–1, respectively. Dissolved BC (DBC) concentrations averaged 2.6 µmol C L–1 in both the SML and ULW. Seasonal variations indicated that PBC concentration in the SML was controlled by atmospheric deposition during the dry season, while riverine inputs controlled both PBC and DBC concentrations in ULW during the wet season. Spatiotemporal variations of PBC and DBC during the wet season suggest that river runoff was efficient in transporting PBC that had accumulated on land during the dry season, and in mobilizing and transporting DBC to the ocean. The annual river flux of PBC was about 3.8 times higher than that of DBC. The monsoon regime controls BC input to Halong Bay by favoring dry deposition of BC originating from the north during the dry season, and wet deposition and river runoff during the wet season. High PBC concentrations seem to enhance the transfer of organic carbon from dissolved to particulate phase by adsorbing dissolved organic carbon and stimulating aggregation. Such processes may impact the availability and biogeochemical cycling of other dissolved substances, including nutrients, for the coastal marine ecosystem.



Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 66 ◽  
Author(s):  
Luisa Galgani ◽  
Steven Loiselle

Plastic particles are ubiquitous in the marine environment. Given their low density, they have the tendency to float on the sea surface, with possible impacts on the sea surface microlayer (SML). The SML is an enriched biofilm of marine organic matter, that plays a key role in biochemical and photochemical processes, as well as controlling gas exchange between the ocean and the atmosphere. Recent studies indicate that plastics can interfere with the microbial cycling of carbon. However, studies on microplastic accumulation in the SML are limited, and their effects on organic matter cycling in the surface ocean are poorly understood. To explore potential dynamics in this key ocean compartment, we ran a controlled experiment with standard microplastics in the surface and bulk water of a marine monoculture. Bacterial abundance, chromophoric dissolved organic matter (CDOM), and oxygen concentrations were measured. The results indicate an accumulation of CDOM in the SML and immediate underlying water when microplastic particles are present, as well as an enhanced oxygen consumption. If extrapolated to a typical marine environment, this indicates that alterations in the quality and reactivity of the organic components of the SML could be expected. This preliminary study shows the need for a more integrated effort to our understanding the impact of microplastics on SML functioning and marine biological processes.



2005 ◽  
Vol 96 (3-4) ◽  
pp. 331-345 ◽  
Author(s):  
N. García-Flor ◽  
C. Guitart ◽  
M. Ábalos ◽  
J. Dachs ◽  
J.M. Bayona ◽  
...  


2010 ◽  
Vol 7 (9) ◽  
pp. 2975-2988 ◽  
Author(s):  
C. Stolle ◽  
K. Nagel ◽  
M. Labrenz ◽  
K. Jürgens

Abstract. The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the coastal zone of the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.



Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Stefan Barthel ◽  
Khanneh Wadinga Fomba ◽  
Konrad Müller ◽  
Wolf von Tümpling ◽  
...  

The export of organic matter from ocean to atmosphere represents a substantial carbon flux in the Earth system, yet the impact of environmental drivers on this transfer is not fully understood. This work presents dissolved and particulate organic carbon (DOC, POC) concentrations, their enrichment factors in the sea surface microlayer (SML), and equivalent measurements in marine aerosol particles across the Atlantic Ocean. DOC concentrations averaged 161 ± 139 µmol L–1 (n = 78) in bulk seawater and 225 ± 175 µmol L–1 (n = 79) in the SML; POC concentrations averaged 13 ± 11 µmol L–1 (n = 80) and 17 ± 10 µmol L–1 (n = 80), respectively. High DOC and POC enrichment factors were observed when samples had low concentrations, and lower enrichments when concentrations were high. The impacts of wind speed and chlorophyll-a levels on concentrations and enrichment of DOC and POC in seawater were insignificant. In ambient submicron marine aerosol particles the concentration of water-soluble organic carbon was approximately 0.2 µg m–3. Water-insoluble organic carbon concentrations varied between 0.01 and 0.9 µg m–3, with highest concentrations observed when chlorophyll-a concentrations were high. Concerted measurements of bulk seawater, the SML and aerosol particles enabled calculation of enrichment factors of organic carbon in submicron marine ambient aerosols, which ranged from 103 to 104 during periods of low chlorophyll-a concentrations and up to 105 when chlorophyll-a levels were high. The results suggest that elevated local biological activity enhances the enrichment of marine-sourced organic carbon on aerosol particles. However, implementation of the results in source functions based on wind speed and chlorophyll-a concentrations underestimated the organic fraction at low biological activity by about 30%. There may be additional atmospheric and oceanic parameters to consider for accurately predicting organic fractions on aerosol particles.



Author(s):  
Kimberly Anne Carter-Fenk ◽  
Abigal Dommer ◽  
Michelle E. Fiamingo ◽  
Jeongin Kim ◽  
Rommie Amaro ◽  
...  

Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually...



2010 ◽  
Vol 7 (3) ◽  
pp. 3153-3187 ◽  
Author(s):  
C. Stolle ◽  
K. Nagel ◽  
M. Labrenz ◽  
K. Jürgens

Abstract. The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, 3H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW.



2017 ◽  
Vol 14 ◽  
pp. 30-38 ◽  
Author(s):  
Ludmila Smyrnova ◽  
Elena Katunina ◽  
Anatoly Rjabinin ◽  
Iren Anninskaja

The results of determination of some hydrochemical characteristics and the diversity of microbiota in rain-water and sea-surface microlayer from the Sevastopol bays are presented. The connection between the level of rainfall contamination by surfactants and their accumulation into sea-surface microlayer has been established. In rain-water pH values varied from 4,2 to 8.2. As a result, the pH value and salinity in sea-surface microlayer decreased by 11–15% after storm and prolonged rains. Seasonal concentration variability of dissolved in rain-water Sr, Se, La, Nd, As, Sb, Mo, Ni, Mg, I, and Fe associated with the direction of the prevailing rainy winds. Potentially pathogenic micromycetes (genera Penicillium, Aspergillus, Cladosporium, Phoma) get into the surface microlayer and marine environment with the rain water. Cyanophyta (genera Synechococcus, Microcystis) and Clorophyta (genus Closterium) were capable to grow both in rain-water with salinity 0.0–0.7‰, and in sea-surface microlayer (range of salinities 17.0−20.5 ‰).



Sign in / Sign up

Export Citation Format

Share Document