scholarly journals Vertical marine snow distribution in the stratified, hypersaline, and anoxic Orca Basin (Gulf of Mexico)

Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Arne Diercks ◽  
Kai Ziervogel ◽  
Ryan Sibert ◽  
Samantha B. Joye ◽  
Vernon Asper ◽  
...  

We present a complete description of the depth distribution of marine snow in Orca Basin (Gulf of Mexico), from sea surface through the pycnocline to within 10 m of the seafloor. Orca Basin is an intriguing location for studying marine snow because of its unique geological and hydrographic setting: the deepest ~200 m of the basin are filled with anoxic hypersaline brine. A typical deep ocean profile of marine snow distribution was observed from the sea surface to the pycnocline, namely a surface maximum in total particle number and midwater minimum. However, instead of a nepheloid (particle-rich) layer positioned near the seabed, the nepheloid layer in the Orca Basin was positioned atop the brine. Within the brine, the total particle volume increased by a factor of 2–3 while the total particle number decreased, indicating accumulation and aggregation of material in the brine. From these observations we infer increased residence time and retention of material within the brine, which agrees well with laboratory results showing a 2.2–3.5-fold reduction in settling speed of laboratory-generated marine snow below the seawater-brine interface. Similarly, dissolved organic carbon concentration in the brine correlated positively with measured colored dissolved organic matter (r2 = 0.92, n = 15), with both variables following total particle volume inversely through the pycnocline. These data indicate the release of dissolved organic carbon concomitant with loss in total particle volume and increase in particle numbers at the brine-seawater interface, highlighting the importance of the Orca Basin as a carbon sink.

2014 ◽  
Vol 14 (20) ◽  
pp. 27973-28018 ◽  
Author(s):  
L. Liao ◽  
M. Dal Maso ◽  
D. Mogensen ◽  
P. Roldin ◽  
A. Rusanen ◽  
...  

Abstract. We used the MALTE-BOX model including near-explicit air chemistry and detailed aerosol dynamics to study the mechanisms of observed new particle formation events in the Jülich Plant Atmosphere Chamber. The modelled and measured H2SO4 (sulfuric acid) concentrations agreed within a factor of two. The modelled total monoterpene concentration was in line with PTR-MS observations, and we provided the distributions of individual isomers of terpenes, when no measurements were available. The aerosol dynamic results supported the hypothesis that H2SO4 is one of the critical compounds in the nucleation process. However, compared to kinetic H2SO4 nucleation, nucleation involving OH oxidation products of monoterpenes showed a better agreement with the measurements, with R2 up to 0.97 between modelled and measured total particle number concentrations. The nucleation coefficient for kinetic H2SO4 nucleation was 2.1 × 10−11 cm3 s−1, while the organic nucleation coefficient was 9.0 × 10−14 cm3 s−1. We classified the VOC oxidation products into two sub-groups including extremely low-volatility organic compounds (ELVOCs) and semi-volatile organic compounds (SVOCs). These ELVOCs and SVOCs contributed approximately equally to the particle volume production, whereas only ELVOCs made the smallest particles to grow in size. The model simulations revealed that the chamber walls constitute a major net sink of SVOCs on the first experiment day. However, the net wall SVOC uptake was gradually reduced because of SVOC desorption during the following days. Thus, in order to capture the observed temporal evolution of the particle number size distribution, the model needs to consider reversible gas-wall partitioning.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 352
Author(s):  
Adelaide Dinoi ◽  
Daniel Gulli ◽  
Ivano Ammoscato ◽  
Claudia R. Calidonna ◽  
Daniele Contini

During the new coronavirus infection outbreak, the application of strict containment measures entailed a decrease in most human activities, with the consequent reduction of anthropogenic emissions into the atmosphere. In this study, the impact of lockdown on atmospheric particle number concentrations and size distributions is investigated in two different sites of Southern Italy: Lecce and Lamezia Terme, regional stations of the GAW/ACTRIS networks. The effects of restrictions are quantified by comparing submicron particle concentrations, in the size range from 10 nm to 800 nm, measured during the lockdown period and in the same period of previous years, from 2015 to 2019, considering three time intervals: prelockdown, lockdown and postlockdown. Different percentage reductions in total particle number concentrations are observed, −19% and −23% in Lecce and −7% and −4% in Lamezia Terme during lockdown and postlockdown, respectively, with several variations in each subclass of particles. From the comparison, no significant variations of meteorological factors are observed except a reduction of rainfall in 2020, which might explain the higher levels of particle concentrations measured during prelockdown at both stations. In general, the results demonstrate an improvement of air quality, more conspicuous in Lecce than in Lamezia Terme, during the lockdown, with a differed reduction in the concentration of submicronic particles that depends on the different types of sources, their distance from observational sites and local meteorology.


2012 ◽  
Vol 12 (7) ◽  
pp. 16457-16492 ◽  
Author(s):  
M. Dall'Osto ◽  
D.C.S. Beddows ◽  
J. Pey ◽  
S. Rodriguez ◽  
A. Alastuey ◽  
...  

Abstract. Differential mobility particle sizer (DMPS) aerosol concentrations (N13–800) were collected over a one-year-period (2004) at an urban background site in Barcelona, North-Eastern Spain. Quantitative contributions to particle number concentrations of the nucleation (33–38%), Aitken (39–49%) and accumulation mode (18–22%) were estimated. We examined the source and time variability of atmospheric aerosol particles by using both K-means clustering and Positive Matrix Factorization (PMF) analysis. Performing clustering analysis on hourly size distributions, nine K-means DMPS clusters were identified and, by directional association, diurnal variation and relationship to meteorological and pollution variables, four typical aerosol size distribution scenarios were identified: traffic (69% of the time), dilution (15% of the time), summer background conditions (4% of the time) and regional pollution (12% of the time). According to the results of PMF, vehicle exhausts are estimated to contribute at least to 62–66% of the total particle number concentration, with a slightly higher proportion distributed towards the nucleation mode (34%) relative to the Aitken mode (28–32%). Photochemically induced nucleation particles make only a small contribution to the total particle number concentration (2–3% of the total), although only particles larger than 13 nm were considered in this study. Overall the combination of the two statistical methods is successful at separating components and quantifying relative contributions to the particle number population.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 334 ◽  
Author(s):  
Adelaide Dinoi ◽  
Marianna Conte ◽  
Fabio M. Grasso ◽  
Daniele Contini

Continuous measurements of particle number size distributions in the size range from 10 nm to 800 nm were performed from 2015 to 2019 at the ECO Environmental-Climate Observatory of Lecce (Global Atmosphere Watch Programme/Aerosol, Clouds and Trace Gases Research Infrastructure (GAW/ACTRIS) regional station). The main objectives of this work were to investigate the daily, weekly and seasonal trends of particle number concentrations and their dependence on meteorological parameters gathering information on potential sources. The highest total number concentrations were observed during autumn-winter with average values nearly twice as high as in summer. More than 52% of total particle number concentration consisted of Aitken mode (20 nm < particle diameter (Dp) < 100 nm) particles followed by accumulation (100 nm < Dp < 800 nm) and nucleation (10 nm < Dp < 20 nm) modes representing, respectively, 27% and 21% of particles. The total number concentration was usually significantly higher during workdays than during weekends/holidays in all years, showing a trend likely correlated with local traffic activities. The number concentration of each particle mode showed a characteristic daily variation that was different in cold and warm seasons. The highest concentrations of the Aitken and accumulation particle mode were observed in the morning and the late evening, during typical rush hour traffic times, highlighting that the two-particle size ranges are related, although there was significant variation in the number concentrations. The peak in the number concentrations of the nucleation mode observed in the midday of spring and summer can be attributed to the intensive formation of new particles from gaseous precursors. Based on Pearson coefficients between particle number concentrations and meteorological parameters, temperature, and wind speed had significant negative relationships with the Aitken and accumulation particle number concentrations, whereas relative humidity was positively correlated. No significant correlations were found for the nucleation particle number concentrations.


2019 ◽  
Author(s):  
Samuel A. Atwood ◽  
Sonia M. Kreidenweis ◽  
Paul J. DeMott ◽  
Markus D. Petters ◽  
Gavin C. Cornwell ◽  
...  

Abstract. Aerosol particle and cloud condensation nuclei (CCN) measurements from a littoral location on the northern coast of California at Bodega Bay Marine Laboratory (BML) are presented for approximately six weeks of observations during the CalWater-2015 field campaign. A combination of aerosol microphysical and meteorological parameters was used to classify variability in the properties of the BML surface aerosol using a K-means cluster model. Eight aerosol population types were identified that were associated with a range of impacts from both marine and terrestrial sources. Average measured total particle number concentrations, size distributions, hygroscopicities, and activated fraction spectra between 0.08 % and 1.1 % supersaturation are given for each of the identified aerosol population types, along with meteorological observations and transport pathways during time periods associated with each type. Five terrestrially influenced aerosol population types represented different degrees of aging of the continental outflow from the coast and interior of California and their appearance at the BML site was often linked to changes in wind direction and transport pathway. In particular, distinct aerosol populations, associated with diurnal variations in source region induced by land/sea-breeze shifts, were classified by the clustering technique. A terrestrial type representing fresh emissions, and/or a recent new particle formation event, occurred in approximately 10 % of the observations. Over the entire study period, three marine influenced population types were identified that typically occurred when the regular diurnal land/sea-breeze cycle collapsed and BML was continuously ventilated by air masses from marine regions for multiple days. These marine types differed from each other primarily in the degree of cloud processing evident in the size distributions, and in the presence of an additional large-particle mode for the type associated with the highest wind speeds. One of the marine types was associated with a multi-day period during which an atmospheric river made landfall at BML. The generally higher total particle number concentrations but lower activated fractions of four of the terrestrial types yielded similar CCN number concentrations to two of the marine types for supersaturations below about 0.4 %. Despite quite different activated fraction spectra, the two remaining marine and terrestrial types had CCN spectral number concentrations very similar to each other, due in part to higher number concentrations associated with the terrestrial type.


2012 ◽  
Vol 5 (1) ◽  
pp. 9-14
Author(s):  
M. F. Fadal ◽  
J. Haarhoff ◽  
S. Marais

Abstract. This paper proposes a three-parameter mathematical model to describe the particle size distribution in a water sample. The proposed model offers some conceptual advantages over two other models reported on previously, and also provides a better fit to the particle counting data obtained from 321 water samples taken over three years at a large South African drinking water supplier. Using the data from raw water samples taken from a moderately turbid, large surface impoundment, as well as samples from the same water after treatment, typical ranges of the model parameters are presented for both raw and treated water. Once calibrated, the model allows the calculation and comparison of total particle number and volumes over any randomly selected size interval of interest.


2013 ◽  
Vol 13 (9) ◽  
pp. 4783-4799 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
J. Ström ◽  
P. Vaattovaara ◽  
A. M. L. Ekman ◽  
...  

Abstract. Primary marine aerosols (PMAs) are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent, will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw) range between −1°C and 15°C. A sharp decrease in PMA emissions for a Tw increase from −1°C to 4°C was followed by a lower rate of change in PMA emissions for Tw up to about 6°C. Near constant number concentrations for water temperatures between 6°C to 10°C and higher were recorded. Even though the total particle number concentration changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for a dry diameter (Dp< 0.125μm measured during winter conditions were similar (deviation of up to 3%), or lower (up to 70%) than the ones measured during summer conditions (for the same water temperature range). For Dp > 0.125μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%). The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1°C to 10°C during winter measurements showed a decrease in the peak of relative particle number concentration at about a Dp of 0.180μm, while an increase was observed for particles with Dp > 1μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range 7–11°C. The differences in the shape of the number size distributions between winter and summer may be caused by different production of organic material in water, different local processes modifying the water masses within the fjord (for example sea ice production in winter and increased glacial meltwater inflow during summer) and different origin of the dominant sea water mass. Further research is needed regarding the contribution of these factors to the PMA production.


2014 ◽  
Vol 14 (6) ◽  
pp. 3083-3093 ◽  
Author(s):  
M. Fiebig ◽  
D. Hirdman ◽  
C. R. Lunder ◽  
J. A. Ogren ◽  
S. Solberg ◽  
...  

Abstract. This article investigates the annual cycle observed in the Antarctic baseline aerosol scattering coefficient, total particle number concentration, and particle number size distribution (PNSD), as measured at Troll Atmospheric Observatory. Mie theory shows that the annual cycles in microphysical and optical aerosol properties have a common cause. By comparison with observations at other Antarctic stations, it is shown that the annual cycle is not a local phenomenon, but common to central Antarctic baseline air masses. Observations of ground-level ozone at Troll as well as backward plume calculations for the air masses arriving at Troll demonstrate that the baseline air masses originate from the free troposphere and lower stratosphere region, and descend over the central Antarctic continent. The Antarctic summer PNSD is dominated by particles with diameters <100 nm recently formed from the gas-phase despite the absence of external sources of condensible gases. The total particle volume in Antarctic baseline aerosol is linearly correlated with the integral insolation the aerosol received on its transport pathway, and the photooxidative production of particle volume is mostly limited by photooxidative capacity, not availability of aerosol precursor gases. The photooxidative particle volume formation rate in central Antarctic baseline air is quantified to 207 ± 4 μm3/(MJ m). Further research is proposed to investigate the applicability of this number to other atmospheric reservoirs, and to use the observed annual cycle in Antarctic baseline aerosol properties as a benchmark for the representation of natural atmospheric aerosol processes in climate models.


2012 ◽  
Vol 12 (18) ◽  
pp. 8663-8677 ◽  
Author(s):  
C. Fountoukis ◽  
I. Riipinen ◽  
H. A. C. Denier van der Gon ◽  
P. E. Charalampidis ◽  
C. Pilinis ◽  
...  

Abstract. A three-dimensional regional chemical transport model (CTM) with detailed aerosol microphysics, PMCAMx-UF, was applied to the European domain to simulate the contribution of direct emissions and secondary formation to total particle number concentrations during May 2008. PMCAMx-UF uses the Dynamic Model for Aerosol Nucleation and the Two-Moment Aerosol Sectional (TOMAS) algorithm to track both aerosol number and mass concentration using a sectional approach. The model predicts nucleation events that occur over scales of hundreds up to thousands of kilometers especially over the Balkans and Southeast Europe. The model predictions were compared against measurements from 7 sites across Europe. The model reproduces more than 70% of the hourly concentrations of particles larger than 10 nm (N10) within a factor of 2. About half of these particles are predicted to originate from nucleation in the lower troposphere. Regional nucleation is predicted to increase the total particle number concentration by approximately a factor of 3. For particles larger than 100 nm the effect varies from an increase of 20% in the eastern Mediterranean to a decrease of 20% in southern Spain and Portugal resulting in a small average increase of around 1% over the whole domain. Nucleation has a significant effect in the predicted N50 levels (up to a factor of 2 increase) mainly in areas where there are condensable vapors to grow the particles to larger sizes. A semi-empirical ternary sulfuric acid-ammonia-water parameterization performs better than the activation or the kinetic parameterizations in reproducing the observations. Reducing emissions of ammonia and sulfur dioxide affects certain parts of the number size distribution.


Sign in / Sign up

Export Citation Format

Share Document