scholarly journals Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment

Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Daniel L. Childers ◽  
Paul Bois ◽  
Hilairy E. Hartnett ◽  
Timon McPhearson ◽  
Geneviève S. Metson ◽  
...  

It is likely that half of the urban areas that will exist in 2050 have not yet been designed and built. This provides tremendous opportunities for enhancing urban sustainability, and using “nature in cities” is critical to more resilient solutions to urban challenges. Terms for “urban nature” include Green Infrastructure (GI), Green-Blue Infrastructure (GBI), Urban Green Space (UGS), and Nature-Based Solutions (NBS). These terms, and the concepts they represent, are incomplete because they tend to reduce the importance of non-terrestrial ecological features in cities. We argue that the concept of Urban Ecological Infrastructure (UEI), which came from a 2013 forum held in Beijing and from several subsequent 2017 publications, is a more inclusive alternative. In this paper we refine the 2013 definition of UEI and link the concept more directly to urban ecosystem services. In our refined definition, UEI comprises all parts of a city that support ecological structures and functions, as well as the ecosystem services provided by UEI that directly affect human outcomes and wellbeing. UEI often includes aspects of the built environment, and we discuss examples of this “hybrid infrastructure”. We distinguish terrestrial, aquatic, and wetland UEI because each type provides different ecosystem services. We present several examples of both “accidental” UEI and UEI that was explicitly designed and managed, with an emphasis on wetland UEI because these ecotonal ecosystems are uniquely both terrestrial and aquatic. We show how both accidental and planned UEI produces unexpected ecosystem services, which justifies recognizing and maintaining both purposeful and serendipitous types of UEI in cities. Finally, we posit that by incorporating both “ecological” and “infrastructure”, UEI also helps to bridge urban scientists and urban practitioners in a more transdisciplinary partnership to build more resilient and sustainable cities.

2020 ◽  
Vol 12 (12) ◽  
pp. 1929 ◽  
Author(s):  
Wenhui Kuang ◽  
Yinyin Dou

Urban green space (UGS) plays a pivotal role in improving urban ecosystem services and building a livable environment for urban dwellers. However, remotely sensed investigation of UGS at city scale is facing a challenge due to the pixels’ mosaics of buildings, squares, roads and green spaces in cities. Here we developed a new algorithm to unmix the fraction of UGS derived from Landsat TM/ETM/8 OLI using a big-data platform. The spatiotemporal patterns and dynamics of UGSs were examined for 70 major cities in China between 2000 and 2018. The results showed that the total area of UGS in these cities grew from 2780.66 km2 in 2000 to 6764.75 km2 in 2018, which more than doubled its area. As a result, the UGS area per inhabitant rose from 15.01 m2 in 2000 to 18.09 m2 in 2018. However, an uneven layout of UGS occurred among the coastal, western, northeastern and central zones. For example, the UGS percentage in newly expanded urban areas in the coastal zone rose significantly in 2000–2018, with an increase of 2.51%, compared to the decline in UGS in cities in the western zone. Therefore, the effective strategies we have developed should be adopted to show disparities and promote green infrastructure capacity building in those cities with less green space, especially in western China.


2021 ◽  
Author(s):  
Hassanali Mollashahi ◽  
Magdalena Szymura

Urban ecosystems are composed of biological components (plants, animals, microorganisms, and other forms of life) and physical components (soil, water, air, climate, and topography) which interact together. In terms of “Urban Green infrastructure (UGI)”, these components are in a combination of natural and constructed materials of urban space that have an important role in metabolic processes, biodiversity, and ecosystem resiliency underlying valuable ecosystem services. The increase in the world’s population in urban areas is a driving force to threat the environmental resources and public health in cities; thus, the necessity to adopt sustainable practices for communities are crucial for improving and maintaining urban environmental health. This chapter emphasizes the most important issues associated with urban ecosystem, highlighting the recent findings as a guide for future UGI management, which can support city planners, public health officials, and architectural designers to quantify cities more responsive, safer places for people.


2021 ◽  
Vol 6 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Judy Bush ◽  
Gavin Ashley ◽  
Ben Foster ◽  
Gail Hall

As cities increase in size and density, the ecosystem services supplied by urban greenery and green infrastructure are increasingly vital for sustainable, liveable urban areas. However, retaining and maximising urban greenery in densifying cities is challenging. Governments have critical roles in addressing these challenges through policy development and implementation. While there has been significant attention on the quality and quantity of green space on public land, there is an increasing focus on policy mechanisms for integrating green infrastructure into the private realm, including green roofs, walls, facades, balconies and gardens. As part of City of Melbourne’s efforts to increase greening across the municipality, its 2017 Green Our City Strategic Action Plan includes specific focus on the private realm, and development of regulatory processes for green infrastructure. This article reports on a participatory research project to develop a Green Factor Tool for application to building development proposals in Melbourne. We focus on the transdisciplinary collaborations that brought together contributions from researchers, practitioners, policymakers and designers. We discuss how local research on green space contributions to provision of ecosystem services shaped the design of the tool and provided the tool’s rigorous evidence-base. Finally, we consider the roles of urban planning in retaining and maximising urban green spaces in densifying urban areas.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 391 ◽  
Author(s):  
Evan Elderbrock ◽  
Chris Enright ◽  
Kathryn A. Lynch ◽  
Alexandra R. Rempel

Street trees, native plantings, bioswales, and other forms of green infrastructure alleviate urban air and water pollution, diminish flooding vulnerability, support pollinators, and provide other benefits critical to human well-being. Urban planners increasingly value such urban ecosystem services (ES), and effective methods for deciding among alternative planting regimes using urban ES criteria are under active development. In this effort, integrating stakeholder values and concerns with quantitative urban ES assessments is a central challenge; although it is widely recommended, specific approaches have yet to be explored. Here, we develop, apply, and evaluate such a method in the Friendly Area Neighborhood of Eugene, Oregon by investigating the potential for increased urban ES through the conversion of public lawn to alternative planting regimes that align with expressed stakeholder priorities. We first estimated current urban ES from green space mapping and published supply rates, finding lawn cover and associated ES to be dominant. Resident and expert priorities were then revealed through surveys and Delphi analyses; top priorities included air quality, stormwater quality, native plantings, and pollinator habitat, while concerns focused on cost and safety. Unexpectedly, most residents expressed a willingness to support urban ES improvements financially. This evidence then informed the development of planting regime alternatives among which we compared achievable future urban ES delivery, revealing clear differences among those that maximized stakeholder priorities, those that maximized quantitative urban ES delivery, and their integration. The resulting contribution is a straightforward method for identifying planting regimes with a high likelihood of success in delivering desired urban ES in specific local contexts.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.


AMBIO ◽  
2014 ◽  
Vol 43 (4) ◽  
pp. 445-453 ◽  
Author(s):  
Erik Andersson ◽  
Stephan Barthel ◽  
Sara Borgström ◽  
Johan Colding ◽  
Thomas Elmqvist ◽  
...  

Author(s):  
Marise Barreiros Horta ◽  
Maria Inês Cabral ◽  
Iva Pires ◽  
Laura Salles Bachi ◽  
Ana Luz ◽  
...  

By integrating social, ecological, and economic perspectives, the assessment of ecosystem services (ES) provides valuable information for better targeting landscape planning and governance. This chapter summarizes different participatory approaches for assessing ES in urban areas of three countries. In Belo Horizonte (Brazil), a conceptual framework for the vacant lots ES assessment is presented as an attempt to integrate landscape, social, and political dimensions. In Leipzig (Germany), a combination of site surveys, interviews, and remote sensing provides a valuable data set that fostered a comparative study between two forms of urban gardening. In Lisbon (Portugal), the study is based on interviews that offer a social insight into the horticultural parks situation, which in turn demands a better dialogue with the municipality. In general, the studies demonstrate the potential benefits of utilizing the ES assessment approaches on urban landscapes, especially for better understanding the interactions between people and nature in urban sites.


2019 ◽  
Vol 11 (22) ◽  
pp. 6200 ◽  
Author(s):  
Daniel Richards ◽  
Mahyar Masoudi ◽  
Rachel R. Y. Oh ◽  
Erik S. Yando ◽  
Jingyuan Zhang ◽  
...  

Humans rely upon ecosystem services to regulate their environment and to provide resources and cultural benefits. As the world’s urban population grows, it becomes increasingly important to find ways of improving the provision of ecosystem services in urban areas. However, the kinds of ecosystem services that are most needed or demanded by urban populations, and the opportunities to provide these, vary widely in cities around the world. Here we explore variation in climate, Human Development Index (HDI), and population density, and discuss their implications for providing and managing urban ecosystem services. Using 221 published studies of urban ecosystem services, we analyse the extent to which existing research adequately covers global variation in climatic and social conditions. Our results reveal an under-representation of studies from tropical cities and from lower HDI countries, with implications for how we conceptualize and quantify urban ecosystem services, and how we transfer benefits across case studies. Future work should be aimed at correcting these deficits and determining the extent to which conclusions about urban ecosystem services are transferable from one city to another.


Environments ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 51 ◽  
Author(s):  
Paulo Amador Tavares ◽  
Norma Beltrão ◽  
Ulisses Silva Guimarães ◽  
Ana Teodoro ◽  
Paulo Gonçalves

Urban ecosystem services (UES) is an essential approach to the development of sustainable cities and must be incorporated into urban planning to be able to improve humans’ life quality. This paper aimed to identify remote sensing (RS) data/techniques used in the literature in five years (2013–2017) for UES investigation and to analyze the similarity between them. For this purpose, we used the Scopus database of scientific journals, and a set of appropriate filters were applied. A total of 44 studies were selected, being 93.18% of them located in the Northern Hemisphere, mostly in Europe. The most common dataset used was the secondary data, followed by the Landsat family products. Land use and land cover (LULC) was the most common approach utilized, succeeded by radiometric indexes and band related. All four main classes (provision, regulation, supporting, and cultural) of ecosystem services (ES) were identified in the reviewed papers, wherein regulating services were the most popular modality mentioned. Seven different groups were established as having 100% of similarity between methods and ES results. Therefore, RS is identified in the literature as an important technique to reach this goal. However, we highlight the lack of studies in the southern hemisphere.


Sign in / Sign up

Export Citation Format

Share Document