scholarly journals Studies on electrodeposited Zn-Fe alloy coating on mild steel and its characterization

2018 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Ramesh Bhat ◽  
Ampar Chitharanjan Hegde

Chloride bath containing ZnCl2 ∙7H2O, FeCl2 ∙H2O and a combination of sulphamic acid and citric acid (SA+CA) were optimized for electrodeposition of bright Zn-Fe alloy coating on the mild steel. Bath constituents and operating parameters were optimized by the Hull cell method for highest performance of the coating against corrosion. The effect of current density and temperature on deposit characteristics such as corrosion resistance, hardness, thickness, cathode current efficiency and glossiness, were studied. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) methods were used to assess corrosion behaviour. Surface morphology of coatings was examined using scanning electron microscopy (SEM). The Zn-Fe alloy with intense peaks corresponding to Zn (100) and Zn (101) phases, evidenced by X-ray diffraction (XRD) study, showed the highest corrosion resistance. A new and economical chloride bath for electrodeposition of bright Zn-Fe alloy coating on mild steel was proposed and discussed.

2019 ◽  
Vol 31 (4) ◽  
pp. 891-895
Author(s):  
Dinesh Kumar Chelike ◽  
K. Juliet Gnana Sundari

Considering the good corrosion resistance of Zn-Ni alloy, it is selected in the present study to be the protective coating on mild steel and it is considered as a strong candidate for the replacement of environmentally hazardous cadmium. Zn-Ni alloy coating is applied by electrodeposition at optimum temperature, current density and time. The bath solution used is consisting of EDTA as complexing agent. The electrodeposition is also carried out with tartaric acid and benzaldehyde additives to have good corrosion resistance and brightness. The electrodeposits obtained with and without additives are examined for nature and alloy composition. The corrosion behaviour of the electrodeposits is studied by Tafel polarization and electrochemical impedance spectroscopy.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Mohammad Reza Jandaghi ◽  
Abdollah Saboori ◽  
Gholamreza Khalaj ◽  
Mohammadreza Khanzadeh Ghareh Shiran

In this study, the microstructural evolutions and corrosion resistance of aluminium/copper joint fabricated through explosive welding process have been thoroughly investigated, while stand-off distance was variable. Microstructural analyses demonstrate that, regardless of grain refinement in the welding boundary, increasing the stand-off space is followed by a higher thickness of the localized melting pool. X-Ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses recognized the binary intermetallic layers as a combination of Al2Cu and AlCu. Polarization and electrochemical impedance spectroscopy (EIS) corrosion tests revealed that a higher stand-off distance resulted in the increment of corrosion potential, current rate, and concentration gradient at the interface owing to the remarkable kinetic energy of the collision, which impaired corrosion resistance.


Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2005 ◽  
Vol 11 (S03) ◽  
pp. 82-85 ◽  
Author(s):  
E. T. Uzumaki ◽  
C. S. Lambert ◽  
A. R. Santos Jr. ◽  
C. A. C. Zavaglia

Diamond-like carbon (DLC) films have been intensively studied with a view to improving orthopaedic implants. Studies have indicated smoothness of the surface, low friction, high wear resistance, corrosion resistance and biocompatibility [1-4]. DLC coatings can be deposited using various techniques, such as plasma assisted chemical vapour deposition (PACVD), magnetron sputtering, laser ablation, and others [5]. However it has proved difficult to obtain films which exhibit good adhesion. The plasma immersion process, unlike the conventional techniques, allows the deposition of DLC on three-dimensional workpieces, even without moving the sample, without an intermediate layer, and with high adhesion [6], an important aspect for orthopaedic articulations. In our previous work, DLC coatings were deposited on silicon and Ti-13Nb-13Zr alloy substrates using the plasma immersion process for the characterization of microstructure, mechanical properties and corrosion behaviour [7-9]. Hardness, measured by a nanoindenter, ranged from 16.4-17.6 GPa, the pull test results indicate the good adhesion of DLC coatings to Ti-13Nb-13Zr, and electrochemical assays (polarization test and electrochemical impedance spectroscopy) indicate that DLC coatings produced by plasma immersion can improve the corrosion resistance [9].


1970 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
TS Sidhu ◽  
S Prakash ◽  
RD Agrawal

The present study aims to evaluate the hot corrosion behaviour of the Ni-based alloy Superni- 75 in the molten salt environment of Na2SO-60%V2O5 at 900°C under cyclic conditions. The thermogravimetric technique was used to establish the kinetics of corrosion. X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe microanalysis techniques were used to analyse the corrosion products. Superni-75 has successfully provided the hot corrosion resistance to the given molten salt environment. The hot corrosion resistance of the Superni-75 has been attributed to the formation of uniform, homogeneous and adherent thick layer of the scale consisting mainly of oxides of nickel and chromium, and refractory Ni(VO3)2. These oxides and refractory nickel vanadates have blocked the penetration of oxygen and other corrosive species to the substrate. Keywords: Hot corrosion, nickel-based alloy, superalloy, molten salt environment   DOI: 10.3329/jname.v3i2.922 Journal of Naval Architecture and Marine Engineering 3(2006) 77-82


2016 ◽  
Vol 8 (3) ◽  
pp. 1716-1735
Author(s):  
C. Kumar ◽  
A. John Amal Raj ◽  
S.K. Selvaraj

Human tear comes in contact with a number of instruments during operation in the eyes.  This results in a variety of undesirable effects such as corrosion and malfunction.  Corrosion behaviour of five metals, namely, mild steel (MS), mild steel coated with zinc (MS-Zn), Ni-Cr, Ni-Ti super elastic (Ni-Ti.SE), and SS 316 L in artificial tear solution has been studied by polarization study and AC impedance spectra.  The study reveals that the decreasing order of corrosion resistance in artificial tear solution is : Ni-Ti SE > Ni-Cr > SS 316 L > MS-Zn > MS.  The first three metals are better candidates and the first one is the best candidate for making instruments used in operation in the eyes, in presence of tears.


CORROSION ◽  
10.5006/3767 ◽  
2022 ◽  
Author(s):  
Malvika Karri ◽  
Amit Verma ◽  
J.B. Singh ◽  
Sunil Kumar Bonagani ◽  
U.K. Goutam

This work seeks to understand the underlying mechanism involved in passivity of Ni-Cr-Mo alloys in a less concentrated HCl solution (1M) by systematically varying contents of Cr and Mo solutes in model Ni-Cr-Mo alloys. Corrosion behaviour was evaluated based on potentiodynamic polarisation tests carried out in conjunction with electrochemical impedance and x-ray photoelectron spectroscopies of passive films that formed on alloys during their exposure to the HCl solution. Results have shown that an increase in Mo alone is not sufficient to improve the corrosion resistance of the alloys at lower concentrations of HCl. Optimum concentrations of Cr and Mo solutes have been found to be in the vicinity of ~17 wt.% Cr and ~19 wt.% Mo for superior corrosion resistance of the alloys. This was attributed to the protection of the Cr2O3 layer as a consequence of the enrichment of Mo6+ ions in the passive film in 1M HCl solution.


2020 ◽  
Vol 32 (6) ◽  
pp. 1384-1392
Author(s):  
N. M'hanni ◽  
M. Galai ◽  
T. Anik ◽  
M. Ebn Touhami ◽  
E.H. Rifi ◽  
...  

The autocatalytic nickel bath uses sodium hypophosphite as a reducing agent, sodium citrate as a complexing agent and sodium acetate as an accelerator. The effect of calix[4]arene molecule type H4L named (dicarboxylic acid p-tert-butylcalix[4]arene) was studied and used at various concentrations of 10-3 to 10-6 M to improve the microstructure, the microhadness and properties of nickel deposit obtained. The effect of varying the concentration of H4L, on the deposition rate, the composition, the microstructure and morphology of chemical deposition was studied. The results showed that depending on the concentration of calix[4]arene, the deposition rate decreases from 11, to 7.75 μm/h. The microstructure and microhardness improves significantly at a concentration of 10-6 M of additive. It was also shown that the coating obtained is adherent and compact and the chemical bath has become more stable in the presence of calix[4]arenic additives. Indeed, in both cases, the nickel content decreased with the addition of concentration. This decrease of nickel content might be related to the increase of deposition rate depending on the concentration. The X-ray diffraction analysis revealed peak intensification in the {111} orientation of plane in the presence of a concentration of 10-6 M; this may be in agreement with the results of metallographic study which showed that the coatings are adherent and have a good resistance. Hence, the Vickers microhardness of deposited coatings has a better value (376 HV) at the concentration 10-6 M. The corrosion resistance in 3% NaCl solution has been proven at the same concentration as found. Finally, the cyclic voltammetry and electrochemical impedance spectroscopic studies revealed that the additive strongly influences the cathodic process and affects slightly oxidation of hypophosphite.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
M. G. Tsoeunyane ◽  
M. E. Makhatha ◽  
O. A. Arotiba

The ecofriendly poly(butylene succinate) extended with 1,6-diisocynatohexane composted with L-histidine (PBSLH) polymer composite was synthesized by condensation polymerization. The polymer composite was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM-EDX). The inhibition action of the polymer composite was investigated by conventional weight loss, potentiodynamic polarization, variable amplitude micro (VASP), and electrochemical impedance spectroscopy (EIS). The maximum corrosion inhibition efficiency of 78 % was obtained at concentration level of 600 ppm. The results revealed PBSLH as a mixed type corrosion inhibitor. The thermodynamic and kinetic parameters also revealed adsorption of PBSLH on to mild surface as exothermic and the adsorption was conformed to Langmuir model. The morphology of mild steel coupons was investigated by SEM and atomic force microscope (AFM) and the results showed PBSLH to have inhibited corrosion on mild steel in 1 M HCL.


Sign in / Sign up

Export Citation Format

Share Document