Numerical study of asymmetric and axisymmetric thermal jet with entropy generation concept

2021 ◽  
Vol 15 (1) ◽  
pp. 7628-7636
Author(s):  
D. Belakhal ◽  
Kouider Rahmani ◽  
Amel Elkaroui Elkaroui ◽  
Syrine Ben Haj Ayech ◽  
Nejla Mahjoub Saïd ◽  
...  

In the current investigation, numerical study of a thermal jet of asymmetric (rectangular and elliptical) and axisymmetric (circular) geometry was investigated with variable density to verify the impact of the ratio of density and geometry on the generation of entropy. The central jet was brought to different temperatures (194, 293 and 2110 K) to obtain density ratios (0.66, 1 and 7.2) identical to a mixture jet ((Air-CO2), (Air-Air) and (Air-He)), respectively. Solving the three-dimensional numerical resolution of the Navier Stocks for turbulent flow permanent enclosed on the turbulence model K-εstandard was made. The results acquired are compared with that carried out in previous experimental studies, where it was concluded that, the axisymmetric (circular) geometry increases the entropy generation.

2017 ◽  
Vol 824 ◽  
pp. 866-885 ◽  
Author(s):  
Ali Mazloomi Moqaddam ◽  
Shyam S. Chikatamarla ◽  
Iliya V. Karlin

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.


Author(s):  
Pan Fang ◽  
Yuxin Xu ◽  
Shuai Yuan ◽  
Yong Bai ◽  
Peng Cheng

Fibreglass reinforced flexible pipe (FRFP) is regarded as a great alternative to many bonded flexible pipes in the field of oil or gas transportation in shallow water. This paper describes an analysis of the mechanical behavior of FRFP under torsion. The mechanical behavior of FRFP subjected to pure torsion was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP subjected to torsional load. Torque-torsion angle relations were recorded during this test. Then, a theoretical model based on three-dimensional (3D) anisotropic elasticity theory was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and PE layers was used to simulate the torsional load condition in ABAQUS. Torque-torsion angle relations obtained from these three methods agree well with each other, which illustrates the accuracy and reliability of the analytical model and FEM. The impact of fibreglass winding angle, thickness of reinforced layers and radius-thickness ratio were also studied. Conclusions obtained from this research may be of great practicality to manufacturing engineers.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987774 ◽  
Author(s):  
Wei Wang ◽  
Qingdian Zhang ◽  
Tao Tang ◽  
Shengpeng Lu ◽  
Qi Yi ◽  
...  

A method of water injection to flow field using distributed holes on the suction surface of hydrofoil is presented in this article to control cavitation flow. Modified renormalization group k–ε turbulence model is coupled with full-cavitation model to calculate periodical cavitation patterns and the dynamic characteristics of the NACA66(MOD) hydrofoil. Water injection is found to be highly effective for cavitation suppression. The cavitation suppression effect of distributed regulation of jet holes and porosities along three-dimensional spanwise hydrofoil is also investigated. The appropriate porosities of single row spanwise jet holes and optimal jet position of double row jet holes are revealed for both cavitation suppression and good hydrodynamic performance. Double row jet holes setting in forward trapezoidal arrangement shows great potential for cavitation suppression and hydrodynamic performance. This research provides a method of water injection to flow field to actively control cavitation, which will facilitate development of engineering designs.


Author(s):  
Mohammad Reza Ghaemdoust ◽  
Omid Yousefi ◽  
Kambiz Narmashiri ◽  
Masoumeh Karimian

In view of development and repair costs, support of structures is imperative. Several factors, for example, design and calculation errors, absence of appropriate installation, change of structures application, exhaustion, seismic tremor, fire and natural conditions diminish their strength. In such cases, structures have need of rehabilitation and restoration to achieve their original performance. One of the most up to date materials for retrofitting is carbon fiber reinforced polymer (CFRP) that can provide an amount of restriction to postpone buckling of thin steel walls. This paper provides a numerical and experimental investigation on CFRP strengthened short steel tubes with initial horizontal and vertical deficiency under compression. Ten square and circular specimens were tested to study effects of the following parameters: (1) position of deficiency, horizontal or vertical; (2) tube shape, square or circular; (3) CFRP strengthening. In the experiments, axial static loading was gradually applied and for the numerical study three-dimensional (3D) static nonlinear analysis method using ABAQUS software was performed. The results show that deficiency reduces load-bearing capacity of steel columns and the impact of horizontal deficiency is higher than the impact of vertical deficiency, in both square and circular tubes. Use of CFRP materials for strengthening of short steel columns with initial deficiency indicates that fibers play a considerable role on increasing load bearing capacity, reducing stress at the damage location, preventing deformation caused by deficiency and delaying local buckling. Both numerical and experimental outcomes are in good agreement, which underlines the accuracy of the models adopted.


Author(s):  
M. Häfele ◽  
J. Starzmann ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.


2015 ◽  
Vol 723 ◽  
pp. 26-30 ◽  
Author(s):  
Jiang Ren Lu ◽  
Xin Li Sun ◽  
Xing Hui Cai ◽  
San Qiang Dong ◽  
Guo Liang Wang

The impact responses and ballistic resistance of the metal encapsulating ceramic composite armors with same area density and two hybrid cores are investigated. The hybrid cores include square metallic lattice with ceramic block insertions, and square metallic lattice with ceramic ball insertions and void-filling epoxy resin. Three-dimensional (3D) finite element (FE) simulations are carried out for each composite armors impacted by bullet with 12.7mm diameter. The focus is placed on the energy absorption capabilities and ballistic limit velocity of different composite armors. Results indicate that two kind of armors can improve the ballistic resistance properties and save mass of 22% and 25% compared to the homogeneous 4340 steel, respectively.


Author(s):  
Hakan F. Oztop ◽  
Kolsi Lioua ◽  
Borjini Mohamad Naceur ◽  
Khaled Al-Salem

Purpose – The main purpose of this paper is to conduct on three-dimensional buoyancy and thermocapillary convection in an enclosure. Entropy generation is obtained from the calculated values of velocities and temperatures. Design/methodology/approach – As numerical method, the vorticity-vector potential formalism allows, in a three-dimensional configuration, the elimination of the pressure, which is a delicate term to treat. The control volume finite difference method is used to discretize equations. The central-difference scheme for treating convective terms and the fully implicit procedure to discretize the temporal derivatives are retained. The grid is uniform in all directions with additional nodes on boundaries. The successive relaxation iterating scheme is used to solve the resulting non-linear algebraic equations. Findings – Results are presented via entropy generation due to heat transfer, entropy generation due to fluid friction and total entropy generation. It is found that Marangoni number becomes more effective parameter on total entropy generation for lower values of Rayleigh numbers. Practical implications – In any thermal system under buoyancy induced and thermocapillary flow. Originality/value – It is believed that this is the first paper on three-dimensional solution of entropy generation in a cubical cavity under thermocapillary buoyancy flow.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Alessandro Corsini ◽  
Giovanni Delibra ◽  
Anthony G. Sheard

Taking a lead from the humpback whale flukes, characterized by a series of bumps that result in a sinusoidal-like leading edge, this paper reports on a three-dimensional numerical study of sinusoidal leading edges on cambered airfoil profiles. The turbulent flow around the cambered airfoil with the sinusoidal leading edge was computed at different angles of attack with the open source solver OpenFOAM, using two different eddy viscosity models integrated to the wall. The reported research focused on the effects of the modified leading edge in terms of lift-to-drag performance and the influence of camber on such parameters. For these reasons a comparison with a symmetric airfoil is provided. The research was primarily concerned with the elucidation of the fluid flow mechanisms induced by the bumps and the impact of those mechanisms on airfoil performance, on both symmetric and cambered profiles. The bumps on the leading edge influenced the aerodynamic performance of the airfoil, and the lift curves were found to feature an early recovery in post-stall for the symmetric profile with an additional gain in lift for the cambered profile. The bumps drove the fluid dynamic on the suction side of the airfoil, which in turn resulted in the capability to control the separation at the trailing edge in coincidence with the peak of the sinusoid at the leading edge.


Author(s):  
Ramesh Narayanaswamy ◽  
Tilak T. Chandratilleke ◽  
Andrew J. L. Foong

Efficient cooling techniques are one of the critical design requirements for maintaining reliable operational characteristics of modern, miniaturised high performance electronic components. Microchannel heat sinks form an integral part of most devices used for thermal management in electronic equipment cooling. A microchannel of square cross section, having internal longitudinal fins is considered for analysis. A numerical study is carried out to investigate the fluid flow and heat transfer characteristics. Three-dimensional numerical simulations are performed on the microchannel in the presence of a hydrodynamically developed, thermally developing laminar flow. Further on, a thermodynamic analysis is carried out, for a range of fin heights and thermophysical parameters, in order to obtain the irreversibilities due to heat transfer and fluid flow within the microchannel. An optimum fin height, corresponding to the thermodynamically optimum conditions that minimize the entropy generation rates has been obtained. The effect of the presence of internal fins on the entropy generated due to heat transfer, fluid friction, and the total entropy generation is also provided.


2017 ◽  
Vol 10 ◽  
pp. 100-110 ◽  
Author(s):  
Abdullah A.A.A Al-Rashed ◽  
Lioua Kolsi ◽  
Ahmed Kadhim Hussein ◽  
Walid Hassen ◽  
Mohamed Aichouni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document