scholarly journals Effects of reverse cold rolling on the microstructure, texture and mechanical properties of AA1100 aluminium alloys

2021 ◽  
Vol 15 (2) ◽  
pp. 7983-7992
Author(s):  
Oswaldo Rivero ◽  
Diego Pico ◽  
Laura G Castruita ◽  
Francisco García-Pastor ◽  
Jimy Unfried

In this work the microstructure, texture and mechanical properties during different stages of reverse cold rolling (RCR) process on aluminium alloy AA1100-H14 were analysed.  Microstructure was observed using optical and electron scanning microscopy. Texture was analysed using X-ray diffraction (macrotexture) and electron back-scattering diffraction (microtexture) techniques. Tensile test and microhardness measurements were carried out. Results showed that a high deformation using RCR was obtained in samples of annealed state leading to maximum values of tensile strength and hardness, along with a reduction of ductility. Intensity of -fibres decreased producing unstable textures {112} <110> while microstructure exhibited refinement of grain, with enlarged morphology.

2016 ◽  
Vol 849 ◽  
pp. 295-301 ◽  
Author(s):  
Yan Feng Li ◽  
Xue Feng ◽  
Xun Jun Mi ◽  
Xiang Qian Yin ◽  
Xiao Yu Kang

The microstructure and mechanical properties of TiNiFe alloys with different compositions was investigated by tensile test, X-ray diffraction, EBSD, SEM, and TEM. The results indicated that tensile strength rapidly increased with increasing Ni content. In addition, Ti2(Ni,Fe) particles were observed in the TiNiFe alloys, which affected the mechanical properties. Increasing the content of Ni had little influence on the grain size of TiNiFe alloys. With the replacement of Ni by Fe, the lattice constant of TiNiFe alloys decreased as the Ni content increased.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


2020 ◽  
pp. 096739112096065
Author(s):  
K Suhailath ◽  
Meenu Thomas ◽  
MT Ramesan

The current article aims to develop poly (butyl methacrylate) (PBMA) nanocomposites with enhanced electrical and mechanical properties by incorporating neodymium oxide (Nd2O3) nanoparticles between the PBMA chains. The morphological, thermal and structural profiles of the PBMA nanocomposites reinforced with different loading of Nd2O3 nanoparticles were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The SEM images revealed that the morphology of the PBMA was significantly influenced by the insertion of Nd2O3. The uniform dispersion of Nd2O3 in the polymer composite was visible at 5 wt% loading of nano-filler. The main crystalline peaks of Nd2O3 nanoparticles in the amorphous PBMA structure were revealed by the X-ray diffraction analysis. The thermal stability of PBMA was greatly enhanced by the dispersion of Nd2O3 in the PBMA matrix. The tensile strength and elongation at break of the composites were measured and both results showed the enhanced mechanical properties of PBMA due to the reinforcement of Nd2O3 nanoparticles. The various parameters affecting the increased tensile strength of composite by the incorporation of nanoparticles were studied by different theoretical modeling. The electrical properties such as dielectric constant and the dielectric loss tangent (tan δ) of PBMA nanocomposites were enhanced with the addition of nanoparticles. Also, the DC conductivity of polymer composites was estimated and the applicability of different theoretical models for predicting the conductivity properties of PBMA/Nd2O3 nanocomposites were examined.


Author(s):  
Memduh Kara ◽  
Tolga Coskun ◽  
Alper Gunoz

Aluminum is a material with advantageous properties such as lightness, good conductivity, high plastic deformation ability, and superior corrosion resistance. However, aluminum and many aluminum alloys have disadvantages in terms of mechanical properties such as hardness, tensile strength, and wear resistance. To overcome this disadvantage of aluminum, it is a good method to add ceramic particles to the matrix. For this purpose, in this study, B4C (boron carbide)-reinforced AA2014 aluminum matrix composites were fabricated at 3%, 5%, and 7% reinforcement ratios using the stir casting method. Tensile tests, wear tests, cutting force measurements, and microhardness measurements were performed to determine the fabricated composite materials’ mechanical properties. Scanning electron microscopy and optical microscopy were used to analyze the microstructure of composite. X-ray diffraction analysis was utilized to study the phase identification. As a result of the study, it was observed that with the increase in the B4C reinforcement ratio, the mechanical properties of the aluminum matrix composite material, such as wear resistance, cutting strength, and hardness, increased. On the other hand, the change in tensile strength did not occur in this way. Tensile strength first increased and then decreased. The highest value of tensile strength was achieved at 5% B4C reinforcement. X-ray diffraction results showed that AA2014 and B4C were the fundamental elements in composites and are free from intermetallics.


2012 ◽  
Vol 516-517 ◽  
pp. 1902-1905 ◽  
Author(s):  
Abd Rashid Amirul ◽  
Yusoff Mahani

Copper alloy C194 lead frame occasionally has been observed creates non-sticking defect at wire bond process in typical microelectronic assembly line. The effect was significantly assessed as process variation during die attach. In this study, microstructure and mechanical properties of copper alloy lead frames were investigated. The copper alloy lead frames were selected from different batches in the production line that produced sticking (typical performance) and non-sticking defect. The micro structural and structural properties were investigated by means of optical microscopy (OM) and X-ray diffraction (XRD), respectively. The hardness and tensile strength were also determined. The result revealed that non-sticking lead frame has larger grain size of 43.8 nm than typical performance lead frame. Due to lower dislocation density, tensile strength and hardness of typical lead frame with smaller grain size were higher than that of defect lead frame. Elongation of defect lead frame was reached above 10% as compared to typical performance lead frame groups with the value below 4%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3832 ◽  
Author(s):  
Saeid Abbasi ◽  
Mohammad Hemen Jannaty ◽  
Rabar H. Faraj ◽  
Shahriar Shahbazpanahi ◽  
Amir Mosavi

Incorporating various industrial waste materials into concrete has recently gained attention for sustainable construction. This paper, for the first time, studies the effects of silica stone waste (SSW) powder on concrete. The cement of concrete was replaced with 5, 10, 15, and 20% of the SSW powder. The mechanical properties of concrete, such as compressive and tensile strength, were studied. Furthermore, the microstructure of concrete was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier transformed infrared spectroscopy (FTIR), and X-Ray diffraction (XRD) tests. Compressive and tensile strength of samples with 5% SSW powder was improved up to 18.8% and 10.46%, respectively. As can be observed in the SEM images, a reduced number of pores and higher density in the matrix can explain the better compressive strength of samples with 5% SSW powder.


2012 ◽  
Vol 236-237 ◽  
pp. 113-117
Author(s):  
Song Wang ◽  
Ming Xie

W-26Re alloy was fabricated by spark plasma sintering (SPS) technology. The phases, microstructures and mechanical properties of the alloy were investigated by X-ray diffraction, optical light microscope, scanning electron microscope, energy dispersion spectroscope, digital display micro-hardness tester and tensile test. Results show that, using SPS technique can prepare W-26Re alloy with high density, fine grain and excellent mechanical properties. The relative density of W-26Re alloy was 96.2%. The main phases in the alloy were determined by the amount of (W) solid solution and the intermetallic  phases. The micro-hardness was 729HV, the ultimate tensile strength was 1680MPa, yield tensile strength was 1143MPa and elongation of alloy was 8.7%.


1977 ◽  
Vol 32 (9-10) ◽  
pp. 743-747 ◽  
Author(s):  
R. Jonak ◽  
Ch. M. Lapière ◽  
A. Meinel ◽  
H. Nemetschek-Gansler ◽  
Th. Nemetschek ◽  
...  

Abstract Dermatosparactic calf-tail-tendon-collagen was investigated by mechanical measurements, electron microscopy and x-ray diffraction. We suppose, that the tensile strength decrease of the fibres is due to the irregular aggregation of subfibrils to fibrils. The x-ray diagram of the fibre is not influenced by state of disorder. Cyclic extension of dermatosparactic collagen leads to a higher increase in tensile strength than in the case of normal calf tendon. The effect might be due to the increase of fibril-and area-density resulting in an augmentation of crosslinks.


2018 ◽  
Vol 8 (4) ◽  
pp. 3113-3115
Author(s):  
S. M. Rajaa ◽  
H. A. Abdulhadi ◽  
K. S. Jabur ◽  
G. R. Mohammed

This work investigates the influence of artificial aging and solution heat treatment on the hardness and tensile strength (mechanical properties) of Al 6061-T6 alloy. For this investigation, several aluminum 6061-T6 alloy specimens were prepared following the ASTM 176000 recommendations. The prepared specimens were heated for 1 hour at 500ºC before being water-quenched. The procedure for artificial aging was performed for 1, 2, 3, and 4 hours at 190ºC before being slowly cooled in air. Several mechanical and characterization studies were performed on the treated specimens, including an investigation on their microstructure, tensile strength, hardness, and X-ray diffraction pattern. From the results, the strength and hardness properties of the specimens were found to be generally improved, even as the best features were obtained after 2 hours of artificial aging.


Sign in / Sign up

Export Citation Format

Share Document