Insulin binding and action in adipocytes in vitro in relation to insulin action in vivo in young and middle-aged subjects

1986 ◽  
Vol 113 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Hannele Yki-Jarvinen ◽  
Tuula Kiviluoto ◽  
Esko A. Nikkila

Abstract. The effect of age on glucose metabolism in vivo was compared to that found in adipocytes in vitro in young (n = 8, age 23 to 31 years) and middle-aged (n = 7, age 37 to 55 years) non-diabetic subjects. During the OGTT, the incremental glucose or insulin areas did not differ significantly between the groups. Fasting and 2 h plasma glucose (P < 0.01) and the 2 h plasma insulin (P < 0.05) levels were, however, slightly higher in the middle-aged than in the young group. During iv induced hyperinsulinaemia (~ 85 mU/l), rates of glucose uptake were comparable between the middle-aged (6.32 ± 0.94 mg/kg/min) and the young subjects (7.56 ± 0.78 mg/kg/min, P > 0.5). In fat cells, both basal and insulin stimulated rates of glucose transport were 35% lower (P < 0.05) in the middle-aged than in the young subjects. Basal and insulin stimulated rates of glucose oxidation and lipogenesis were both markedly lower (P <0.01) in the middle-aged than in the young group. The rates of glucose transport, oxidation and lipogenesis were inversely related to age, whereas none of these parameters was related to fat cell size. In conclusion, adipocyte glucose metabolism in middle-aged healthy subjects was markedly impaired. In contrast, rates of glucose uptake during iv hyperinsulinaemia and glucose responses during hyperinsulinaemia in the OGTT were comparable in young and middle-aged subjects. These results indicate first, that changes in adipose tissue glucose metabolism by aging do not parallel changes in whole body glucose metabolism and thus are specific for adipose tissue. Secondly, insulin-mediated glucose uptake is not reduced in middle-aged subjects. Thus, the small elevation in fasting and 2-h glucose levels may reflect a reduction in glucose uptake by non-insulin dependent pathways by aging.

Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 431-439 ◽  
Author(s):  
S.K. Ellington

The glucose metabolism and embryonic development of rat embryos during organogenesis was studied using embryo culture. Glucose uptake and embryonic growth and differentiation of 10.5-day explants (embryos + membranes) were limited by the decreasing glucose concentration, but not the increasing concentration of metabolites, in the culture media during the second 24 h of a 48 h culture. No such limitations were found on the embryonic development of 9.5-day explants during a 48 h culture although glucose uptake was slightly reduced at very low concentrations of glucose. From the head-fold stage to the 25-somite stage of development, glucose uptake was characteristic of the stage of development of the embryo and not the time it had been in culture. Embryonic growth of 9.5-day explants was similar to that previously observed in vivo. Glucose uptake by 9.5-day explants was dependent on the surface area of the yolk sac and was independent of the glucose concentration in the culture media (within the range of 9.4 to 2.5 mM). The proportion of glucose converted to lactate was 100% during the first 42h of culture then fell to about 50% during the final 6h. The protein contents of both the extraembryonic membranes and the embryo were dependent on the glucose uptake.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


1986 ◽  
Vol 250 (6) ◽  
pp. H1127-H1135
Author(s):  
S. E. Martin ◽  
E. L. Bockman

Intravenous norepinephrine increases glycerol release and blood flow in adipose tissue. The vasodilation may be an indirect effect of norepinephrine through the production of adenosine. Adenosine increases glucose uptake and inhibits lipolysis in vitro. To test whether adenosine regulates blood flow and/or metabolism in vivo, adenosine deaminase (ADA) was infused intra-arterially into the inguinal fat pads of anesthetized dogs. In unstimulated tissues, ADA (n = 7) significantly increased vascular resistance and significantly decreased glucose uptake compared with the effects of a control (boiled deaminase, n = 6) infusion. ADA completely blocked the norepinephrine-induced vasodilation (n = 6). No potentiation of basal or catecholamine-stimulated lipolysis was observed with ADA. The presence of ADA in the interstitial space was verified by analysis of lymph effluents. Interstitial levels of ADA were inversely correlated with the tissue contents of adenosine. These data support the hypothesis that adenosine is a regulator of blood flow in basal and stimulated adipose tissue. Adenosine also appears to regulate glucose uptake, but not lipolysis, in vivo.


1993 ◽  
Vol 84 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Brian W. Morris ◽  
Trevor A. Gray ◽  
Sheila MacNeil

1. This study was designed to investigate the influence of insulin and glucose on the distribution of trivalent chromium in human plasma and blood cells and in human and rat insulin-sensitive and -insensitive tissues. 2. Evidence is provided that, in the rat in vitro, a clear difference exists in chromium binding between insulin-sensitive and -insensitive tissues in that chromium binding is significantly enhanced by glucose in insulin-sensitive tissues. 3. Glucose-dependent association of chromium with human adipose tissue was blocked by inhibitors of glucose transport. 4. Addition of insulin slightly increased the response to glucose in muscle and reduced the response to glucose in adipose tissue; such effects were less marked than those seen in response to glucose alone. 5. The results of this study in vitro support the hypothesis that, in vivo, chromium translocates from the blood compartment to insulin-sensitive tissues.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Hengshuo Hu ◽  
Nan Xia ◽  
Jiaquan Lin ◽  
Daoyong Li ◽  
Chuanjie Zhang ◽  
...  

Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.


1985 ◽  
Vol 249 (3) ◽  
pp. E312-E316 ◽  
Author(s):  
E. Dall'Aglio ◽  
H. Chang ◽  
C. B. Hollenbeck ◽  
C. E. Mondon ◽  
C. Sims ◽  
...  

The effect of streptozotocin-induced diabetes mellitus on maximal insulin-stimulated glucose uptake in the rat was studied in isolated adipocyte, perfused hindlimb, and the intact organism. Basal glucose transport per fat cell was reduced by approximately two-thirds (P less than 0.001), being associated with a similar decrease in glucose oxidation per fat cell (P less than 0.001). There was also a significant decrease (P less than 0.001) in basal glucose uptake by perfused hindlimb of diabetic rats of approximately 40%. Furthermore, maximal insulin-stimulated glucose transport and oxidation were approximately 50% lower (P less than 0.001) in fat cells of diabetic as compared with control rats. In contrast, maximal insulin-stimulated glucose disposal by perfused hindlimbs from diabetic and control rats was similar, and this was also true of the ability of insulin to maximally stimulate glucose uptake in the intact normal and diabetic rat. These findings indicate that variation exists in the manner in which insulin-sensitive tissues respond to experimentally induced insulin deficiency and support the view that total body glucose disposal is primarily related to insulin action on muscle.


2009 ◽  
Vol 296 (5) ◽  
pp. R1327-R1335 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Véronique Turcotte ◽  
Mathieu Laplante ◽  
Meltem Sariahmetoglu ◽  
...  

We investigated the mechanisms whereby peroxisome proliferator-activated receptor-γ (PPARγ) agonism affects glucose and lipid metabolism in brown adipose tissue (BAT) by studying the impact of PPARγ activation on BAT glucose uptake and metabolism, lipogenesis, and mRNA levels plus activities of enzymes involved in triacylglycerol (TAG) synthesis. Interscapular BAT of rats treated or not with rosiglitazone (15 mg·kg−1·day−1, 7 days) was evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (PAP or lipin-1), and diacylglycerol acyltransferase (DGAT). Rosiglitazone increased BAT mass without affecting whole tissue glucose uptake. BAT glycogen content (−80%), its synthesis from glucose (−50%), and mRNA levels of UDP-glucose pyrophosphorylase (−40%), which generates UDP-linked glucose for glycogen synthesis, were all reduced by rosiglitazone. In contrast, BAT TAG-glycerol synthesis in vivo and glucose incorporation into TAG-glycerol in vitro were stimulated by the agonist along with the activities and mRNA levels of glycerol 3-phosphate-generating phosphoenolpyruvate carboxykinase and glycerokinase. Furthermore, rosiglitazone markedly increased the activities of GPAT and DGAT but not those of lipin-1-mediated PAP-1, enzymes involved in the sequential acylation of glycerol 3-phosphate and TAG synthesis. Because an adequate supply of fatty acids is essential for BAT nonshivering thermogenesis, the enhanced ability of BAT to synthesize TAG under PPARγ activation may constitute an important mechanism by which lipid substrates are stored in preparation for an eventual thermogenic activation.


1996 ◽  
Vol 270 (3) ◽  
pp. R660-R666 ◽  
Author(s):  
T. A. Kotchen ◽  
H. Y. Zhang ◽  
S. Reddy ◽  
R. G. Hoffmann

Pioglitazone (a thiazolidinedione derivative) increases insulin sensitivity and prevents hypertension in the Dahl-salt-sensitive (S) rat. The present study was undertaken to determine if pioglitazone modulates pressor responsiveness to vasoactive agents, both in vivo and in vitro. In vivo, pretreatment with pioglitazone inhibited (P < 0.02) pressor responses to both norepinephrine and angiotensin II in conscious Dahl-S, but not in Sprague-Dawley rats. In vitro, pioglitazone augmented the capacity of insulin to inhibit pressor responses of strips of thoracic aortas to norepinephrine, but not to angiotensin. Additionally, in vitro, incubation with insulin plus pioglitazone augmented acetylcholine-induced, but not nitroprusside-induced vasodilation. Pioglitazone pretreatment increased (P < 0.001) in vitro insulin-stimulated glucose uptake in adipose tissue, but not in thoracic aortas of Dahl-S. We hypothesize that pioglitazone attenuates hypertension by modulating the effects of insulin on vascular function, resulting in both blunted vasoconstriction and augmented acetylcholine-induced vasodilation. These alterations are not accounted for by an effect of pioglitazone on glucose uptake by vascular smooth muscle.


2020 ◽  
Vol 134 (6) ◽  
pp. 571-592 ◽  
Author(s):  
Caitlyn Nguyen-Ngo ◽  
Carlos Salomon ◽  
Stephanie Quak ◽  
Andrew Lai ◽  
Jane C Willcox ◽  
...  

Abstract Gestational diabetes mellitus (GDM) is a global health issue, whereby pregnant women are afflicted with carbohydrate intolerance with first onset during pregnancy. GDM is characterized by maternal peripheral insulin resistance, thought to be driven by low-grade maternal inflammation. Nobiletin, a polymethoxylated flavonoid, possesses potent glucose-sensitizing and anti-inflammatory properties; however, its effects in GDM have not been assessed. The present study aimed to determine the effects of nobiletin on glucose metabolism and inflammation associated with GDM in both in vitro human tissues and an in vivo animal model of GDM. In vitro, treatment with nobiletin significantly improved TNF-impaired glucose uptake in human skeletal muscle, and suppressed mRNA expression and protein secretion of pro-inflammatory cytokines and chemokines in human placenta and visceral adipose tissue (VAT). Mechanistically, nobiletin significantly inhibited Akt and Erk activation in placenta, and NF-κB activation in VAT. In vivo, GDM mice treated with 50 mg/kg nobiletin daily via oral gavage from gestational day (gd) 1-17 or via i.p. injections from gd 10-17 significantly improved glucose tolerance. Pregnant GDM mice treated with nobiletin from either gd 1-17 or gd 10-17 exhibited significantly suppressed mRNA expression of pro-inflammatory cytokines and chemokines in placenta, VAT and subcutaneous adipose tissue (SAT). Using a quantitative mass spectrometry approach, we identified differentially abundant proteins associated with the effect of nobiletin in vivo. Together, these studies demonstrate that nobiletin improves glucose metabolism and reduces inflammation associated with GDM and may be a novel therapeutic for the prevention of GDM.


2012 ◽  
Vol 302 (12) ◽  
pp. E1511-E1518 ◽  
Author(s):  
Qiang Wang ◽  
Maggie M. Chi ◽  
Tim Schedl ◽  
Kelle H. Moley

Glucose is an essential nutrient for mammalian cells. Emerging evidence suggests that glucose within the oocyte regulates meiotic maturation. However, it remains controversial as to whether, and if so how, glucose enters oocytes within cumulus-oocyte complexes (COCs). We used a fluorescent glucose derivative (6-NBDG) to trace glucose transport within live mouse COCs and employed inhibitors of glucose transporters (GLUTs) and gap junction proteins to examine their distinct roles in glucose uptake by cumulus cells and the oocyte. We showed that fluorescent glucose enters both cumulus-enclosed and denuded oocytes. Treating COCs with GLUT inhibitors leads to simultaneous decreases in glucose uptake in cumulus cells and the surrounded oocyte but no effect on denuded oocytes. Pharmacological blockade of of gap junctions between the oocyte and cumulus cells significantly inhibited fluorescent glucose transport to oocytes. Moreover, we find that both in vivo hyperglycemic environment and in vitro high-glucose culture increase free glucose levels in oocytes via gap junctional channels. These findings reveal an intercellular pathway for glucose transport into oocytes: glucose is taken up by cumulus cells via the GLUT system and then transferred into the oocyte through gap junctions. This intercellular pathway may partly mediate the effects of high-glucose condition on oocyte quality.


Sign in / Sign up

Export Citation Format

Share Document