scholarly journals Hepcidin links gluco-toxicity to pancreatic beta cell dysfunction by inhibiting Pdx-1 expression

2017 ◽  
Vol 6 (3) ◽  
pp. 121-128 ◽  
Author(s):  
Xuhua Mao ◽  
Hucheng Chen ◽  
Junmin Tang ◽  
Liangliang Wang ◽  
Tingting Shu

Objective Gluco-toxicity is a term used to convey the detrimental effect of hyperglycemia on β-cell function through impaired insulin synthesis. Although it is known that the expression and activity of several key insulin transcription regulators is inhibited, other molecular mechanisms that mediate gluco-toxicity are poorly defined. Our objective was to explore the role of hepcidin in β-cell gluco-toxicity. Design We first confirmed that high glucose levels inhibited hepcidin expression in the mouse insulinoma cell line, MIN6. The downregulation of hepcidin decreased Pdx-1 expression, which reduced insulin synthesis. Methods MIN6 cells were exposed to high glucose concentrations (33.3 mmol/L). Glucose-stimulated insulin secretion (GSIS) and serum hepcidin levels were measured by ELISA. The mRNA levels of insulin1, insulin2, Pdx-1 and hepcidin were measured by real-time polymerase chain reaction. Western blot analysis was used to detect the changes in PDX-1 expression. Transient overexpression with hepcidin was used to reverse the downregulation of Pdx-1 and insulin synthesis induced by gluco-toxicity. Results Exposure of MIN6 cells to high glucose significantly decreased GSIS and inhibited insulin synthesis as well as Pdx-1 transcriptional activity and expression at both the mRNA and protein levels. High glucose also decreased hepcidin expression and secretion. Hepcidin overexpression in MIN6 cells partially reversed the gluco-toxicity-induced downregulation of Pdx-1 and insulin expression and improved GSIS. The restoration of insulin synthesis by transfection of a hepcidin overexpression plasmid confirmed the role of hepcidin in mediating the gluco-toxic inhibition of insulin synthesis. Conclusions Our observations suggest that hepcidin is associated with gluco-toxicity-reduced pancreatic β-cell insulin synthesis in type 2 diabetes by inhibiting Pdx-1 expression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenchao Hu ◽  
Rui Wang ◽  
Bei Sun

Meteorin-like (Metrnl) is a newly discovered myokine. Plasma Metrnl is decreased in subjects with newly diagnosed type 2 diabetes (T2D) and correlated with insulin resistance. This study aims to determine the effects of Metrnl on the apoptosis and proliferation of β cell. Mouse insulinoma MIN6 cells were divided into six groups: normal control, low glucose, high glucose, Vehicle, Metrnl, and Dickkopf 1 (DKK1) groups. MIN6 cells in Metrnl group were transfected with recombinant pCDH-Metrnl vector. WNT/β-catenin pathway was inhibited using DKK1. Then the apoptosis of MIN6 cells was detected using flow cytometry and TUNEL labeling. Immunofluorescence of Ki67 or Edu-594 was used to determine the β cell proliferation. db/db mice were confirmed as T2D group. Lentivirus-Metrnl was injected from the caudal vein of db/db mice once every two weeks for two times. High glucose induced the apoptosis of MIN6 cells and elevated expression of caspase 3. In addition, high glucose resulted in reduced β cell proliferation, cell viability, insulin secretion as well as decreased expression of β-catenin and TCF4. Metrnl ameliorated the above effects of high glucose. And the protecting role of Metrnl was inhibited by DKK1. T2D mice showed higher body weight and blood glucose compared with the controls. The β cell apoptosis was increased while the β cell proliferation and WNT/β-catenin pathway were inhibited in T2D mice. Metrnl treatment partly reversed the above changes in T2D mice. Metrnl ameliorates β cell function by inhibiting β cell apoptosis of and promoting β cell proliferation via activating the WNT/β-catenin pathway.


2019 ◽  
Vol 20 (18) ◽  
pp. 4424
Author(s):  
Jung-Hwa Han ◽  
Suji Kim ◽  
Suji Kim ◽  
Heejung Lee ◽  
So-Young Park ◽  
...  

Hyperglycemia is the major characteristic of diabetes mellitus, and a chronically high glucose (HG) level causes β-cell glucolipotoxicity, which is characterized by lipid accumulation, impaired β-cell function, and apoptosis. TXNIP (Thioredoxin-interacting protein) is a key mediator of diabetic β-cell apoptosis and dysfunction in diabetes, and thus, its regulation represents a therapeutic target. Recent studies have reported that p90RSK is implicated in the pathogenesis of diabetic cardiomyopathy and nephropathy. In this study, we used FMK (a p90RSK inhibitor) to determine whether inhibition of p90RSK protects β-cells from chronic HG-induced TXNIP expression and to investigate the molecular mechanisms underlying the effect of FMK on its expression. In INS-1 pancreatic β-cells, HG-induced β-cell dysfunction, apoptosis, and ROS generation were significantly diminished by FMK. In contrast BI-D1870 (another p90RSK inhibitor) did not attenuate HG-induced TXNIP promoter activity or TXNIP expression. In addition, HG-induced nuclear translocation of ChREBP and its transcriptional target molecules were found to be regulated by FMK. These results demonstrate that HG-induced pancreatic β-cell dysfunction resulting in HG conditions is associated with TXNIP expression, and that FMK is responsible for HG-stimulated TXNIP gene expression by inactivating the regulation of ChREBP in pancreatic β-cells. Taken together, these findings suggest FMK may protect against HG-induced β-cell dysfunction and TXNIP expression by ChREBP regulation in pancreatic β-cells, and that FMK is a potential therapeutic reagent for the drug development of diabetes and its complications.


2021 ◽  
Vol 23 (1) ◽  
pp. 324
Author(s):  
Lucie Oberhauser ◽  
Pierre Maechler

Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of β-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced β-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the β cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the β cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional β cells in type 2 diabetes with a natural, although accelerated, aging process.


2012 ◽  
Vol 216 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Xiuli Men ◽  
Liang Peng ◽  
Haiyan Wang ◽  
Wenjian Zhang ◽  
Shiqing Xu ◽  
...  

The calcium-regulated transcription coactivator, Ca2+-responsive transactivator (CREST) was expressed in pancreatic β-cells. Moreover, CREST expression became significantly increased in pancreatic islets isolated from hyperglycemic Goto–Kakizaki rats compared with normoglycemic Wistar controls. In addition, culture of β-cells in the presence of high glucose concentrations also increased CREST expression in vitro. To further investigate the role of this transactivator in the regulation of β-cell function, we established a stable β-cell line with inducible CREST expression. Hence, CREST overexpression mimicked the glucotoxic effects on insulin secretion and cell growth in β-cells. Moreover, high glucose-induced apoptosis was aggravated by upregulation of the transactivator but inhibited when CREST expression was partially silenced by siRNA technology. Further investigation found that upregulation of Bax and downregulation of Bcl2 was indeed induced by its expression, especially under high glucose conditions. In addition, as two causing factors leading to β-cell apoptosis under diabetic conditions, endoplasmic reticulum stress and high free fatty acid, mimicked the high glucose effects on CREST upregulation and generation of apoptosis in β-cells, and these effects were specifically offset by the siRNA knockdown of CREST. These results indicated that CREST is implicated in β-cell apoptosis induced by culture in high glucose and hence that CREST may become a potential pharmacological target for the prevention and treatment of type 2 diabetes mellitus.


2010 ◽  
Vol 206 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Malek El Muayed ◽  
Liana K Billings ◽  
Meera R Raja ◽  
Xiaomin Zhang ◽  
Paul J Park ◽  
...  

Genetic studies suggest that Zn transporters such as ZnT8 play a role in insulin secretion by pancreatic β-cells; however, little is known about the dynamic roles of Zn trafficking pathways on β-cell physiology. To test the acute effects of the inflammatory cytokines interleukin 1β (IL1β) and tumor necrosis factor α (TNFα) on Zn homeostasis, the mRNA expression profile of Zn transporters of the ZnT and ZIP families was examined. Exposure of MIN6 cells or primary murine islets to IL1β or TNFα altered the mRNA expression profile of Zn transporters; most notable was decreased ZnT8 mRNA levels. siRNA-mediated gene knockdown was used to examine the effects of decreased ZnT8 expression in primary dispersed murine islet cells from C57/BL6 mice and MIN6 cells. ZnT8 knockdown in these murine islets led to reduced glucose stimulated insulin secretion without altering the total cellular insulin content or cell viability at normal or supraphysiological Zn concentrations. The labile Zn content determined by flow cytometry after loading with the Zn-specific sensor FluoZin-3 AM was decreased in MIN6 cells following ZnT8 knockdown or IL1β treatment. These results suggest that an acute decrease in ZnT8 levels impairs β-cell function and Zn homeostasis, and may contribute to inflammatory cytokine-induced alterations in β-cell function.


2010 ◽  
Vol 425 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Diana Han ◽  
Byungho Yang ◽  
L. Karl Olson ◽  
Alexander Greenstein ◽  
Seung-Hoon Baek ◽  
...  

Chronic hyperglycaemia is detrimental to pancreatic β-cells by causing impaired insulin secretion and diminished β-cell function through glucotoxicity. Understanding the mechanisms underlying β-cell survival is crucial for the prevention of β-cell failure associated with glucotoxicity. Autophagy is a dynamic lysosomal degradation process that protects organisms against metabolic stress. To date, little is known about the physiological function of autophagy in the pathogenesis of diabetes. In the present study, we explored the roles of autophagy in the survival of pancreatic β-cells exposed to high glucose using pharmacological and genetic manipulation of autophagy. We demonstrated that chronic high glucose increases autophagy in rat INS-1 (832/13) cells and pancreatic islets, and that this increase is enhanced by inhibition of 5′-AMP-activated protein kinase. Our results also indicate that stimulation of autophagy rescues pancreatic β-cells from high-glucose-induced cell death and inhibition of autophagy augments caspase-3 activation, suggesting that autophagy plays a protective role in the survival of pancreatic β-cells. Greater knowledge of the molecular mechanisms linking autophagy and β-cell survival may unveil novel therapeutic targets needed to preserve β-cell function.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Nicholas Esch ◽  
Seokwon Jo ◽  
Mackenzie Moore ◽  
Emilyn U. Alejandro

The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.


2019 ◽  
Vol 8 (3) ◽  
pp. 150-161 ◽  
Author(s):  
Tingting Shu ◽  
Zhigang Lv ◽  
Yuchun Xie ◽  
Junming Tang ◽  
Xuhua Mao

It has been well established that glucotoxicity induces pancreatic β-cells dysfunction; however, the precise mechanism remains unclear. Our previous studies demonstrated that high glucose concentrations are associated with decreased hepcidin expression, which inhibits insulin synthesis. In this study, we focused on the role of low hepcidin level-induced increased iron deposition in β-cells and the relationship between abnormal iron metabolism and β-cell dysfunction. Decreased hepcidin expression increased iron absorption by upregulating transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) expression, resulting in iron accumulation within cells. Prussia blue stain and calcein-AM assays revealed greater iron accumulation in the cytoplasm of pancreatic tissue isolated from db/db mice, cultured islets and Min6 cells in response to high glucose stimulation. Increased cytosolic iron deposition was associated with greater Fe2+ influx into the mitochondria, which depolarized the mitochondria membrane potential, inhibited ATP synthesis, generated excessive ROS and induced oxidative stress. The toxic effect of excessive iron on mitochondrial function eventually resulted in impaired insulin secretion. The restricted iron content in db/db mice via reduced iron intake or accelerated iron clearance improved blood glucose levels with decreased fasting blood glucose (FBG), fasting blood insulin (FIns), HbA1c level, as well as improved intraperitoneal glucose tolerance test (IPGTT) results. Thus, our study may reveal the mechanism involved in the role of hepcidin in the glucotoxcity impaired pancreatic β cell function pathway.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cai Tan ◽  
Zhihua Zheng ◽  
Xiaogang Wan ◽  
Jiaqing Cao ◽  
Ran Wei ◽  
...  

AbstractThe change in gut microbiota is an important mechanism of the amelioration of type 2 diabetes mellitus (T2DM) after bariatric surgery. Here, we observe that the modified jejunoileal bypass effectively decreases body weight gain, fasting blood glucose, and lipids level in serum; additionally, islet β-cell function, glucose tolerance, and insulin resistance were markedly ameliorated. The hypoglycemic effect and the improvement in islet β-cell function depend on the changes in gut microbiota structure. modified jejunoileal bypass increases the abundance of gut Escherichia coli and Ruminococcus gnavus and the levels of serum glycine, histidine, and glutamine in T2DM rats; and decreases the abundance of Prevotella copri and the levels of serum branched chain amino acids, which are significantly related to the improvement of islet β-cell function in T2DM rats. Our results suggest that amino acid metabolism may contribute to the islet β-cell function in T2DM rats after modified jejunoileal bypass and that improving gut microbiota composition is a potential therapeutic strategy for T2DM.


Sign in / Sign up

Export Citation Format

Share Document