scholarly journals Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle

2012 ◽  
Vol 1 ◽  
Author(s):  
Yoko Yamashita ◽  
Masaaki Okabe ◽  
Midori Natsume ◽  
Hitoshi Ashida

AbstractHyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle.

1998 ◽  
pp. 344-352 ◽  
Author(s):  
T Miyata ◽  
T Taguchi ◽  
M Uehara ◽  
S Isami ◽  
H Kishikawa ◽  
...  

Previously we demonstrated that bradykinin infusion could increase glucose uptake into dog peripheral tissues, and that bradykinin could potentiate insulin-induced glucose uptake through glucose transporter 4 (GLUT4) translocation in dog adipocytes. However, skeletal muscle is the predominant tissue for insulin-mediated glucose disposal. The aim of this study was to determine how bradykinin affected insulin-stimulated glucose uptake in dog skeletal muscle and myotubes transformed from rat L6 myoblasts. The bradykinin receptor binding studies revealed that dog skeletal muscle and rat L6 myoblasts possessed significant numbers of bradykinin receptors (Kd = 88 and 76 pmol/l, Bmax = 82.5 and 20 fmol/mg protein respectively). An RT-PCR (reverse transcriptase-polymerase chain reaction) amplification showed mRNA specific for bradykinin B2 receptor in both cells. Bradykinin significantly increased 2-deoxyglucose uptake in isolated muscle and L6 myoblasts in the presence of insulin (10(-7) mol/l) in a dose-dependent manner, but not in the absence of insulin. Bradykinin also enhanced insulin-stimulated GLUT4 translocation, and insulin-induced phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1 (IRS-1) without affecting the binding affinities or numbers of cell surface insulin receptors in both cells. It is concluded that bradykinin could potentiate the insulin-induced glucose uptake through GLUT4 translocation in dog skeletal muscle and rat L6 myoblasts. This effect could be explained by the potency of bradykinin to upregulate the insulin receptor tyrosine kinase activity which stimulates phosphorylation of IRS-1, followed by an increase in GLUT4 translocation.


2019 ◽  
Vol 316 (5) ◽  
pp. R666-R677 ◽  
Author(s):  
Saori Mukaida ◽  
Masaaki Sato ◽  
Anette I. Öberg ◽  
Nodi Dehvari ◽  
Jessica M. Olsen ◽  
...  

The type 2 diabetes epidemic makes it important to find insulin-independent ways to improve glucose homeostasis. This study examines the mechanisms activated by a dual β2-/β3-adrenoceptor agonist, BRL37344, to increase glucose uptake in skeletal muscle and its effects on glucose homeostasis in vivo. We measured the effect of BRL37344 on glucose uptake, glucose transporter 4 (GLUT4) translocation, cAMP levels, β2-adrenoceptor desensitization, β-arrestin recruitment, Akt, AMPK, and mammalian target of rapamycin (mTOR) phosphorylation using L6 skeletal muscle cells as a model. We further tested the ability of BRL37344 to modulate skeletal muscle glucose metabolism in animal models (glucose tolerance tests and in vivo and ex vivo skeletal muscle glucose uptake). In L6 cells, BRL37344 increased GLUT4 translocation and glucose uptake only by activation of β2-adrenoceptors, with a similar potency and efficacy to that of the nonselective β-adrenoceptor agonist isoprenaline, despite being a partial agonist with respect to cAMP generation. GLUT4 translocation occurred independently of Akt and AMPK phosphorylation but was dependent on mTORC2. Furthermore, in contrast to isoprenaline, BRL37344 did not promote agonist-mediated desensitization and failed to recruit β-arrestin1/2 to the β2-adrenoceptor. In conclusion, BRL37344 improved glucose tolerance and increased glucose uptake into skeletal muscle in vivo and ex vivo through a β2-adrenoceptor-mediated mechanism independently of Akt. BRL37344 was a partial agonist with respect to cAMP, but a full agonist for glucose uptake, and importantly did not cause classical receptor desensitization or internalization of the receptor.


2009 ◽  
Vol 297 (1) ◽  
pp. E57-E66 ◽  
Author(s):  
Sebastian Beck Jørgensen ◽  
Jane Honeyman ◽  
Jonathan S. Oakhill ◽  
Daniel Fazakerley ◽  
Jacqueline Stöckli ◽  
...  

The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimulated glucose uptake, cellular signaling, suppressor of cytokine signaling 3 (SOCS-3) mRNA, and GLUT4 translocation. We found that resistin at a concentration of 30 ng/ml decreased insulin-stimulated glucose uptake by 30–40% in soleus muscle and myotubes, whereas in EDL muscle insulin-stimulated glucose uptake was impaired at a resistin concentration of 100 ng/ml. Impaired insulin-stimulated glucose uptake was not associated with reduced Akt phosphorylation or IRS-1 protein or increased SOCS-3 mRNA expression. To further investigate the site(s) at which resistin impairs glucose uptake we treated myotubes and skeletal muscle with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) and found that, although resistin did not impair AMPK activation, it reduced AICAR-stimulated glucose uptake. These data suggested that resistin impairs glucose uptake at a point common to insulin and AMPK signaling pathways, and we thus measured AS160/TBC1D4 Thr642 phosphorylation and GLUT4 translocation in myotubes. Resistin did not impair TBC1D4 phosphorylation but did reduce both insulin and AICAR-stimulated GLUT4 plasma membrane translocation. We conclude that resistin impairs insulin-stimulated glucose uptake by mechanisms involving reduced plasma membrane GLUT4 translocation but independent of the proximal insulin-signaling cascade, AMPK, and SOCS-3.


2001 ◽  
Vol 21 (22) ◽  
pp. 7852-7861 ◽  
Author(s):  
Liora Braiman ◽  
Addy Alt ◽  
Toshio Kuroki ◽  
Motoi Ohba ◽  
Asia Bak ◽  
...  

ABSTRACT Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKCζ in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKCζ to associate specifically with the GLUT4 compartments and that PKCζ together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKCζ and GLUT4 recycled independently of one another. To further establish the importance of PKCζ in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKCζ (DNPKCζ) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKCζ was associated with a marked increase in the activity of this isoform. The overexpressed, active PKCζ coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKCζ caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKCζ induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKCζ disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKCζ regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


2021 ◽  
Vol 22 (13) ◽  
pp. 7228
Author(s):  
Ching-Chia Wang ◽  
Huang-Jen Chen ◽  
Ding-Cheng Chan ◽  
Chen-Yuan Chiu ◽  
Shing-Hwa Liu ◽  
...  

Urinary acrolein adduct levels have been reported to be increased in both habitual smokers and type-2 diabetic patients. The impairment of glucose transport in skeletal muscles is a major factor responsible for glucose uptake reduction in type-2 diabetic patients. The effect of acrolein on glucose metabolism in skeletal muscle remains unclear. Here, we investigated whether acrolein affects muscular glucose metabolism in vitro and glucose tolerance in vivo. Exposure of mice to acrolein (2.5 and 5 mg/kg/day) for 4 weeks substantially increased fasting blood glucose and impaired glucose tolerance. The glucose transporter-4 (GLUT4) protein expression was significantly decreased in soleus muscles of acrolein-treated mice. The glucose uptake was significantly decreased in differentiated C2C12 myotubes treated with a non-cytotoxic dose of acrolein (1 μM) for 24 and 72 h. Acrolein (0.5–2 μM) also significantly decreased the GLUT4 expression in myotubes. Acrolein suppressed the phosphorylation of glucose metabolic signals IRS1, Akt, mTOR, p70S6K, and GSK3α/β. Over-expression of constitutive activation of Akt reversed the inhibitory effects of acrolein on GLUT4 protein expression and glucose uptake in myotubes. These results suggest that acrolein at doses relevant to human exposure dysregulates glucose metabolism in skeletal muscle cells and impairs glucose tolerance in mice.


Author(s):  
Chih-Chieh Chen ◽  
Chong-Kuei Lii ◽  
Chia-Wen Lo ◽  
Yi-Hsueh Lin ◽  
Ya-Chen Yang ◽  
...  

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


2001 ◽  
Vol 280 (5) ◽  
pp. E677-E684 ◽  
Author(s):  
Nicolas Musi ◽  
Tatsuya Hayashi ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Lee A. Witters ◽  
...  

The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPKα1 and AMPKα2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-β-d-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3- O-methyl-d-glucose (3-MG) uptake. There were dose-dependent increases in AMPKα2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPKα1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPKα2 activity and 3-MG uptake but had little effect on AMPKα1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPKα1 and -α2 activity and 3-MG uptake. Although the AMPKα1 and -α2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPKα2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder affecting metabolic, reproductive and mental health of 8-13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 85% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole body insulin-stimulated glucose uptake, however, in PCOS this is reduced about 27% when assessed by hyperinsulinemic euglycemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). Previous work suggested that Transforming Growth Factor Beta (TGFβ) superfamily ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30ng/ml), a novel TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=10) and healthy controls (n=10). AMH negatively affected glucose uptake and insulin signalling increasing p-IRS1 (ser312) in a dose-dependent manner in myotubes from both women with and without PCOS. AMH did not appear to activate the canonical TGFβ/BMP signalling pathway. Conversely, TGFβ1 had an opposite effect in both PCOS and control myotubes cultures, decreasing phosphorylation of IRS1 (ser312) and enhancing glucose uptake via Smad2/3 signalling. In conclusion, these results suggest that AMH may play a role in skeletal muscle IR observed in PCOS, however, further research is required to elucidate its mechanisms of action and broader impact in this syndrome. References: (1) Stepto et al. Hum Reprod 2013 Mar;28(3):777-784. (2) Cassar et al. Hum Reprod 2016 Nov;31(11):2619-2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al. J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372-5381. (5) Raja-Khan et al. Reprod Sci 2014 Jan;21(1):20-31.


Sign in / Sign up

Export Citation Format

Share Document