scholarly journals IGF-I gene promoter polymorphism is a predictor of survival after myocardial infarction in patients with type 2 diabetes

2006 ◽  
Vol 155 (5) ◽  
pp. 751-756 ◽  
Author(s):  
Mojgan Yazdanpanah ◽  
Fakhredin A Sayed-Tabatabaei ◽  
Joop A M J L Janssen ◽  
Ingrid Rietveld ◽  
Albert Hofman ◽  
...  

Objective: Previously we observed that non-carriers of the most common alleles of an IGF-I promoter polymorphism have low circulating IGF-I levels and an increased risk of developing myocardial infarction (MI), particularly in patients with type 2 diabetes. Design: We investigated whether this IGF-I promoter polymorphism is associated with survival of type 2 diabetes in a Caucasian population aged 55 years and older. Methods: The study was embedded in the Rotterdam Study, a prospective population-based cohort study. At baseline, 668 patients with type 2 diabetes were diagnosed, among which, 55 incident MI were ascertained during follow-up. For the present study, we used two genotype groups: non-variant carriers (homozygous for 192, 194, or 192/194 bp genotypes), and variant carriers. Results: During a median follow-up of 8.8 years, 396 out of the 668 patients with type 2 diabetes (59.3%) died of various causes. The frequency of type 2 diabetes variant carrier and non-variant carriers was 28.7 and 71.3% respectively. The survival in patients with type 2 diabetes without an MI did not differ between the IGF-I genotype groups (hazard ratio (HR) = 0.8, 95% confidence interval (CI): 0.7–1.1, P = 0.1). In contrast, in those who developed an MI, variant carriers had a 2.4 times higher risk of mortality than non-variant carriers (95% CI: 1.2–4.8, P = 0.01). Conclusion: Our study suggests that genetically determined low IGF-I activity is an important determinant of survival in patients with type 2 diabetes who developed an MI. The IGF-I promoter polymorphism, therefore, may help to predict the future mortality risk in this group of patients.

2019 ◽  
Vol 104 (10) ◽  
pp. 4921-4930 ◽  
Author(s):  
Filip Ottosson ◽  
Einar Smith ◽  
Widet Gallo ◽  
Céline Fernandez ◽  
Olle Melander

Abstract Context Metabolomics has the potential to generate biomarkers that can facilitate understanding relevant pathways in the pathophysiology of type 2 diabetes (T2DM). Methods Nontargeted metabolomics was performed, via liquid chromatography–mass spectrometry, in a discovery case-cohort study from the Malmö Preventive Project (MPP), which consisted of 698 metabolically healthy participants, of whom 202 developed T2DM within a follow-up time of 6.3 years. Metabolites that were significantly associated with T2DM were replicated in the population-based Malmö Diet and Cancer–Cardiovascular Cohort (MDC-CC) (N = 3423), of whom 402 participants developed T2DM within a follow-up time of 18.2 years. Results Using nontargeted metabolomics, we observed alterations in nine metabolite classes to be related to incident T2DM, including 11 identified metabolites. N2,N2-dimethylguanosine (DMGU) (OR = 1.94; P = 4.9e-10; 95% CI, 1.57 to 2.39) was the metabolite most strongly associated with an increased risk, and beta-carotene (OR = 0.60; P = 1.8e-4; 95% CI, 0.45 to 0.78) was the metabolite most strongly associated with a decreased risk. Identified T2DM-associated metabolites were replicated in MDC-CC. Four metabolites were significantly associated with incident T2DM in both the MPP and the replication cohort MDC-CC, after adjustments for traditional diabetes risk factors. These included associations between three metabolites, DMGU, 7-methylguanine (7MG), and 3-hydroxytrimethyllysine (HTML), and incident T2DM. Conclusions We used nontargeted metabolomics in two Swedish prospective cohorts comprising >4000 study participants and identified independent, replicable associations between three metabolites, DMGU, 7MG, and HTML, and future risk of T2DM. These findings warrant additional studies to investigate a potential functional connection between these metabolites and the onset of T2DM.


Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 315
Author(s):  
Filip Ottosson ◽  
Einar Smith ◽  
Céline Fernandez ◽  
Olle Melander

Alterations in the human metabolome occur years before clinical manifestation of type 2 diabetes (T2DM). By contrast, there is little knowledge of how metabolite alterations in individuals with diabetes relate to risk of diabetes complications and premature mortality. Metabolite profiling was performed using liquid chromatography-mass spectrometry in 743 participants with T2DM from the population-based prospective cohorts The Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) and The Malmö Preventive Project (MPP). During follow-up, a total of 175 new-onset cases of cardiovascular disease (CVD) and 298 deaths occurred. Cox regressions were used to relate baseline levels of plasma metabolites to incident CVD and all-cause mortality. A total of 11 metabolites were significantly (false discovery rate (fdr) <0.05) associated with all-cause mortality. Acisoga, acylcarnitine C10:3, dimethylguanidino valerate, homocitrulline, N2,N2-dimethylguanosine, 1-methyladenosine and urobilin were associated with an increased risk, while hippurate, lysine, threonine and tryptophan were associated with a decreased risk. Ten out of 11 metabolites remained significantly associated after adjustments for cardiometabolic risk factors. The associations between metabolite levels and incident CVD were not as strong as for all-cause mortality, although 11 metabolites were nominally significant (p < 0.05). Further examination of the mortality-related metabolites may shed more light on the pathophysiology linking diabetes to premature mortality.


2016 ◽  
Vol 101 (5) ◽  
pp. 1963-1969 ◽  
Author(s):  
Sumit R. Majumdar ◽  
Robert G. Josse ◽  
Mu Lin ◽  
Dean T. Eurich

Abstract Context: Type 2 diabetes and osteoporosis are both common, chronic, and increase with age, whereas type 2 diabetes is also a risk factor for major osteoporotic fractures (MOFs). However, different treatments for type 2 diabetes can affect fracture risk differently, with metaanalyses showing some agents increase risk (eg, thiazolidinediones) and some reduce risk (eg, sitagliptin). Objective: To determine the independent association between new use of sitagliptin and MOF in a large population-based cohort study. Design, Setting, and Subjects: A sitagliptin new user study design employing a nationally representative Unites States claims database of 72 738 insured patients with type 2 diabetes. We used 90-day time-varying sitagliptin exposure windows and controlled confounding by using multivariable analyses that adjusted for clinical data, comorbidities, and time-updated propensity scores. Main Outcomes: We compared the incidence of MOF (hip, clinical spine, proximal humerus, distal radius) in new users of sitagliptin vs nonusers over a median 2.2 years follow-up. Results: At baseline, the median age was 52 years, 54% were men, and median A1c was 7.5%. There were 8894 new users of sitagliptin and 63 834 nonusers with a total 181 139 person-years of follow-up. There were 741 MOF (79 hip fractures), with 53 fractures (4.8 per 1000 person-years) among new users of sitagliptin vs 688 fractures (4.0 per 1000 person-years) among nonusers (P = .3 for difference). In multivariable analyses, sitagliptin was not associated with fracture (adjusted hazard ratio 1.1, 95% confidence interval 0.8–1.4; P = .7), although insulin (P &lt; .001), sulfonylureas (P &lt; .008), and thiazolidinedione (P = .019) were each independently associated with increased fracture risk. Conclusions: Even in a young population with type 2 diabetes, osteoporotic fractures were not uncommon. New use of sitagliptin was not associated with fracture, but other commonly used second-line agents for type 2 diabetes were associated with increased risk. These data should be considered when making treatment decisions for those with type 2 diabetes at particularly high risk of fractures.


2021 ◽  
Author(s):  
Stine A. Holmboe ◽  
Ravi Jasuja ◽  
Brian Lawney ◽  
Lærke Priskorn ◽  
Niels Joergensen ◽  
...  

Objective. Calculating the free testosterone level has gained increasing interest and different indirect algorithms have been suggested. The objective was to compare free androgen index (FAI), free testosterone estimated using the linear binding model (Vermeulen: cFTV) and the binding framework accounting for allosterically coupled SHBG monomers (Zakharov: cFTZ) in relation to cardiometabolic conditions. Design. A prospective cohort study including 5,350 men, aged 30-70 years, participating in population-based surveys (MONICA I–III and Inter99) from 1982-2001 and followed until December 2012 with baseline and follow-up information on cardiometabolic parameters and vital status. Results. Using age-standardized hormone levels, FAI was higher among men with baseline cardiometabolic conditions, whereas cFTV and cFTZ levels were lower compared to men without these conditions as also seen for total testosterone. Men in highest quartiles of cFTV or cFTZ had lower risk of developing type 2 diabetes (cFTV: HR=0.74 (0.49-1.10), cFTZ: HR=0.59 (0.39-0.91)) than men in lowest quartile. In contrast, men with highest levels of FAI had a 74% (1.17-2.59) increased risk of developing type 2 diabetes compared to men in lowest quartile. Conclusion. The association of estimated free testosterone and the studied outcomes differ depending on algorithm used. cFTV and cFTZ showed similar associations to baseline and long-term cardiometabolic parameters. In contrast, an empiric ratio, FAI, showed opposite associations to several of the examined parameters and may reflect limited clinical utility.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3146
Author(s):  
Maria G. Jacobo Cejudo ◽  
Esther Cruijsen ◽  
Christiane Heuser ◽  
Sabita S. Soedamah-Muthu ◽  
Trudy Voortman ◽  
...  

Population-based studies suggest a role for dairy, especially yogurt, in the prevention of type 2 diabetes (T2D). Whether dairy affects T2D risk after myocardial infarction (MI) is unknown. We examined associations of (types of) dairy with T2D incidence in drug-treated, post-MI patients from the Alpha Omega Cohort. The analysis included 3401 patients (80% men) aged 60–80 y who were free of T2D at baseline (2002–2006). Dairy intakes were assessed using a validated food-frequency questionnaire. Incident T2D was ascertained through self-reported physician diagnosis and/or medication use. Multivariable Cox models were used to calculate Hazard ratios (HRs) and 95% confidence intervals (CI) for T2D with dairy intake in categories and per 1-standard deviation (SD) increment. Most patients consumed dairy, and median intakes were 264 g/d for total dairy, 82 g/d for milk and 41 g/d for yogurt. During 40 months of follow-up (10,714 person-years), 186 patients developed T2D. After adjustment for confounders, including diet, HRs per 1-SD were 1.06 (95% CI 0.91–1.22) for total dairy, 1.02 (0.88–1.18) for milk and 1.04 (0.90–1.20) for yogurt. Associations were also absent for other dairy types and in dairy categories (all p-trend > 0.05). Our findings suggest no major role for dairy consumption in T2D prevention after MI.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (9) ◽  
pp. e1003723
Author(s):  
Emma Norrman ◽  
Max Petzold ◽  
Mika Gissler ◽  
Anne Lærke Spangmose ◽  
Signe Opdahl ◽  
...  

Background Some earlier studies have found indications of significant changes in cardiometabolic risk factors in children born after assisted reproductive technology (ART). Most of these studies are based on small cohorts with high risk of selection bias. In this study, we compared the risk of cardiovascular disease, obesity, and type 2 diabetes between singleton children born after ART and singleton children born after spontaneous conception (SC). Methods and findings This was a large population-based cohort study of individuals born in Norway, Sweden, Finland, and Denmark between 1984 and 2015. Data were obtained from national ART and medical birth registers and cross-linked with data from national patient registers and other population-based registers in the respective countries. In total, 122,429 children born after ART and 7,574,685 children born after SC were included. Mean (SD) maternal age was 33.9 (4.3) years for ART and 29.7 (5.2) for SC, 67.7% versus 41.8% were primiparous, and 45.2% versus 32.1% had more than 12 years of education. Preterm birth (<37 weeks 0 days) occurred in 7.9% of children born after ART and 4.8% in children born after SC, and 5.7% versus 3.3% had a low birth weight (<2,500 g). Mean (SD) follow-up time was 8.6 (6.2) years for children born after ART and 14.0 (8.6) years for children born after SC. In total, 135 (0.11%), 645 (0.65%), and 18 (0.01%) children born after ART were diagnosed with cardiovascular disease (ischemic heart disease, cardiomyopathy, heart failure, or cerebrovascular disease), obesity or type 2 diabetes, respectively. The corresponding values were 10,702 (0.14%), 30,308 (0.74%), and 2,919 (0.04%) for children born after SC. In the unadjusted analysis, children born after ART had a significantly higher risk of any cardiovascular disease (hazard ratio [HR] 1.24; 95% CI 1.04–1.48; p = 0.02), obesity (HR 1.13; 95% CI 1.05–1.23; p = 0.002), and type 2 diabetes (HR 1.71; 95% CI 1.08–2.73; p = 0.02). After adjustment, there was no significant difference between children born after ART and children born after SC for any cardiovascular disease (adjusted HR [aHR]1.02; 95% CI 0.86–1.22; p = 0.80) or type 2 diabetes (aHR 1.31; 95% CI 0.82–2.09; p = 0.25). For any cardiovascular disease, the 95% CI was reasonably narrow, excluding effects of a substantial magnitude, while the 95% CI for type 2 diabetes was wide, not excluding clinically meaningful effects. For obesity, there was a small but significant increased risk among children born after ART (aHR 1.14; 95% CI 1.06–1.23; p = 0.001). Important limitations of the study were the relatively short follow-up time, the limited number of events for some outcomes, and that the outcome obesity is often not considered as a disease and therefore not caught by registers, likely leading to an underestimation of obesity in both children born after ART and children born after SC. Conclusions In this study, we observed no difference in the risk of cardiovascular disease or type 2 diabetes between children born after ART and children born after SC. For obesity, there was a small but significant increased risk for children born after ART. Trial registration number ISRCTN11780826.


2021 ◽  
Author(s):  
Resham L Gurung ◽  
Rajkumar Dorajoo ◽  
Yiamunaa M ◽  
Ling Wang ◽  
Sylvia Liu ◽  
...  

Abstract Background Chronic kidney disease (CKD) is common among type 2 diabetes (T2D) and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length is associated with CKD in patients with T2D. We previously reported single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 leukocyte telomere length SNPs with CKD, defined as an estimated glomerular filtration rate of less than 60 ml/min/1.73m2 was assessed among 4,768 (1,628 cases, 3,140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analysed. Results Genetically determined shorter leukocyte telomere length was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51 [95% confidence interval, 1.12 - 2.12; P = 0.007; Phet= 0.547]). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β  =  0.010, P = 0.751). Conclusions Our findings suggest that genetically determined leukocyte telomere length is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.


2021 ◽  
Vol 9 (1) ◽  
pp. e001948
Author(s):  
Marion Denos ◽  
Xiao-Mei Mai ◽  
Bjørn Olav Åsvold ◽  
Elin Pettersen Sørgjerd ◽  
Yue Chen ◽  
...  

IntroductionWe sought to investigate the relationship between serum 25-hydroxyvitamin D (25(OH)D) level and the risk of type 2 diabetes mellitus (T2DM) in adults who participated in the Trøndelag Health Study (HUNT), and the possible effect modification by family history and genetic predisposition.Research design and methodsThis prospective study included 3574 diabetes-free adults at baseline who participated in the HUNT2 (1995–1997) and HUNT3 (2006–2008) surveys. Serum 25(OH)D levels were determined at baseline and classified as <50 and ≥50 nmol/L. Family history of diabetes was defined as self-reported diabetes among parents and siblings. A Polygenic Risk Score (PRS) for T2DM based on 166 single-nucleotide polymorphisms was generated. Incident T2DM was defined by self-report and/or non-fasting glucose levels greater than 11 mmol/L and serum glutamic acid decarboxylase antibody level of <0.08 antibody index at the follow-up. Multivariable logistic regression models were applied to calculate adjusted ORs with 95% CIs. Effect modification by family history or PRS was assessed by likelihood ratio test (LRT).ResultsOver 11 years of follow-up, 92 (2.6%) participants developed T2DM. A higher risk of incident T2DM was observed in participants with serum 25(OH)D level of<50 nmol/L compared with those of ≥50 nmol/L (OR 1.72, 95% CI 1.03 to 2.86). Level of 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in adults without family history of diabetes (OR 3.87, 95% CI 1.62 to 9.24) but not in those with a family history (OR 0.72, 95% CI 0.32 to 1.62, p value for LRT=0.003). There was no effect modification by PRS (p value for LRT>0.23).ConclusionSerum 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in Norwegian adults. The inverse association was modified by family history of diabetes but not by genetic predisposition to T2DM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyan Wu ◽  
Yan Borné ◽  
Rui Gao ◽  
Maykel López Rodriguez ◽  
William C. Roell ◽  
...  

AbstractThe hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document