The influence of metabolic states and a high fat meal on circulating chemerin

2021 ◽  
Author(s):  
Alice Murphy ◽  
Rebecca Dumbell ◽  
Madhu Varma ◽  
Gisela Helfer ◽  
Philip McTernan
Keyword(s):  
High Fat ◽  
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 265-LB ◽  
Author(s):  
HELMUT O. STEINBERG ◽  
FRANKIE B. STENTZ ◽  
NANDITA K. SHANKAR
Keyword(s):  
High Fat ◽  
Apo B ◽  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 162-LB
Author(s):  
JEANIE B. TRYGGESTAD ◽  
APRIL M. TEAGUE ◽  
KEVIN R. SHORT

Author(s):  
Simon Fryer ◽  
Keeron Stone ◽  
Craig Paterson ◽  
Meghan Brown ◽  
James Faulkner ◽  
...  

AbstractIndependently, prolonged uninterrupted sitting and the consumption of a meal high in saturated fats acutely disrupt normal cardiovascular function. Currently, the acute effects of these behaviors performed in combination on arterial stiffness, a marker of cardiovascular health, are unknown. This study sought to determine the effect of consuming a high-fat meal (Δ = 51 g fat) in conjunction with prolonged uninterrupted sitting (180 min) on measures of central and peripheral arterial stiffness. Using a randomized crossover design, 13 young healthy males consumed a high-fat (61 g) or low-fat (10 g) meal before 180 min of uninterrupted sitting. Carotid-femoral (cf) and femoral-ankle (fa) pulse wave velocity (PWV), aortic-femoral stiffness gradient (af-SG), superficial femoral PWV beta (β), and oscillometric pulse wave analysis outcomes were assessed pre and post sitting. cfPWV increased significantly more following the high-fat (mean difference [MD] = 0.59 m·s−1) meal than following the low-fat (MD = 0.2 m·s−1) meal, with no change in faPWV in either condition. The af-SG significantly decreased (worsened) (ηp2 = 0.569) over time in the high- and low-fat conditions (ratio = 0.1 and 0.1, respectively). Superficial femoral PWVβ significantly increased over time in the high- and low-fat conditions (ηp2 = 0.321; 0.8 and 0.4 m·s−1, respectively). Triglycerides increased over time in the high-fat trial only (ηp2 = 0.761). There were no significant changes in blood pressure. Consuming a high-fat meal prior to 180 min of uninterrupted sitting augments markers of cardiovascular disease risk more than consuming a low-fat meal prior to sitting.


2015 ◽  
Vol 145 (12) ◽  
pp. 2657-2664 ◽  
Author(s):  
François Mariotti ◽  
Marion Valette ◽  
Christelle Lopez ◽  
Hélène Fouillet ◽  
Marie-Hélène Famelart ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Shahram Ejtemaei Mehr

Cardiovascular disease is the leading cause of death among African Americans (AA). Reduced parasympathetic tone as measured by high frequency heart rate variability (HF RRI ) predicts cardiovascular mortality. HF RRI is reduced after a high fat meal through caveolar sequestration of muscarinic M2 receptors. The fatty acid translocase CD36 is a protein abundant in the myocardium and important for heart function and lipid metabolism. CD36 plasma membrane localization and function in fatty acid uptake is modulated by its interaction with caveolin. One in four AAs are G-allele carriers for CD36 SNP rs3211938 resulting in ~50% decreased CD36 expression. CD36 deficiency also reduces fat taste perception, which might lead to higher fat intake to reach taste saturation. We tested the hypothesis that obese AAs with partial CD36 deficiency have altered parasympathetic tone during fasting and after a high-fat meal. We recruited 13 G-allele carriers and 39 non-carriers. Subjects were matched by age (P=0.820), BMI (P=0.751), and blood pressure (P=0.701). There was a trend towards reduction in heart rate in carriers (P=0.07). Baseline HF RRI was elevated in G carriers (557.1 [251 to 942] vs. 224 [95 to 655] ms 2 , P=0.046). Eleven subjects received a high-fat meal (700 Cal/m 2 BSA, 80% fat). HF RRI was measured at baseline and 30, 60, 120, 240 minutes after meal. Non-carriers (n=4) showed a time-dependent decline in the percent change in HF RRI (-23, -32, -70, -84, respectively). In G-allele carriers (N=6), the decline in HF RRI (21, -11, -61, -70 min) was attenuated. Conclusion: AAs with partial CD36 deficiency have enhanced fasting parasympathetic tone and a blunted response to a high fat meal.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3097-3097
Author(s):  
Nigel Waters ◽  
Manish R. Patel ◽  
Alison M. Schram ◽  
Jordi Rodon Ahnert ◽  
Shekeab Jauhari ◽  
...  

3097 Background: Allosteric oncogenic mutations occur outside the canonical ATP-binding site of EGFR and HER2, and there are no approved therapies that target such mutations. BDTX-189 is a potent, selective, irreversible inhibitor of 48 allosteric EGFR and HER2 mutant variants under clinical evaluation in the ongoing MasterKey-01 trial (NCT04209465). BDTX-189 was designed to rapidly and irreversibly occupy the active site of targeted ErbB mutants, leading to sustained pharmacodynamic (PD) effects, and with selectivity over EGFR-WT in order to minimize EGFR-WT mediated toxicities. The pharmacokinetic (PK) profile was designed for rapid absorption and fast elimination to maintain target occupancy while minimizing prolonged drug exposure that could contribute to off-target associated toxicities. Methods: In MasterKey-01, BDTX-189 was administered orally once daily in continuous 21-day cycles, taken fasted. Dose escalation included cohorts of 1-2 patients receiving doses between 25 and 200 mg QD followed by 5-7 patients receiving 400 mg, 800 mg, or 1,200 mg QD fasted. The possible effects of a high fat meal on the PK of BDTX-189 were assessed in a subset of patients receiving single doses of 400 mg BDTX-189 fasted and immediately after a high-fat breakfast in a randomized crossover fashion with 3 days between doses. In addition, a dose escalation cohort investigating administration of BDTX-189 non-fasted was enrolled at 800 mg QD. Serial blood samples for analysis of plasma BDTX-189 concentrations were collected after each dose on C1D1 and C1D15. BDTX-189 levels were determined using LC-MS, and data analyzed using non-compartmental methods. Results: After single and multiple doses, BDTX-189 was rapidly absorbed (median tmax 1-2 h), with an elimination t1/2 of 2-6 h. Dose-dependent increases in exposure from 200 to 800 mg QD fasted were observed, with no apparent accumulation or decline in exposures observed at steady-state. Administration of BDTX-189 with a high-fat meal increased AUC approximately 1.7-fold with minimal effect on Cmax, relative to administration in the fasted state. At 800 mg QD, mean AUC was similar in the non-fasting state relative to fasting and was within the target efficacious range defined by mouse models harboring allo-ErbB mutated tumors. Median tmax and t1/2 values were similar after administration in the non-fasted and fasted states. Conclusions: BDTX-189 demonstrated rapid absorption and a short PK half-life consistent with the desired PK/PD profile, with exposures in the efficacious target range based on preclinical data. The pilot high fat food-effect data and non-fasting QD dosing regimen show similar or improved systemic exposure relative to dosing in the fasted state. The MasterKey-01 trial is ongoing, including refinement of the dosing regimen and identification of the recommended phase 2 dose. Clinical trial information: NCT04209465.


1999 ◽  
Vol 43 (3) ◽  
pp. 568-572 ◽  
Author(s):  
Charles A. Peloquin ◽  
Amy E. Bulpitt ◽  
George S. Jaresko ◽  
Roger W. Jelliffe ◽  
James M. Childs ◽  
...  

ABSTRACT Ethambutol (EMB) is the most frequent “fourth drug” used for the empiric treatment of Mycobacterium tuberculosis and a frequently used drug for infections caused by Mycobacterium avium complex. The pharmacokinetics of EMB in serum were studied with 14 healthy males and females in a randomized, four-period crossover study. Subjects ingested single doses of EMB of 25 mg/kg of body weight under fasting conditions twice, with a high-fat meal, and with aluminum-magnesium antacid. Serum was collected for 48 h and assayed by gas chromatography-mass spectrometry. Data were analyzed by noncompartmental methods and by a two-compartment pharmacokinetic model with zero-order absorption and first-order elimination. Both fasting conditions produced similar results: a mean (± standard deviation) EMB maximum concentration of drug in serum (C max) of 4.5 ± 1.0 μg/ml, time to maximum concentration of drug in serum (T max) of 2.5 ± 0.9 h, and area under the concentration-time curve from 0 h to infinity (AUC0–∞) of 28.9 ± 4.7 μg · h/ml. In the presence of antacids, subjects had a mean C maxof 3.3 ± 0.5 μg/ml, T max of 2.9 ± 1.2 h, and AUC0–∞ of 27.5 ± 5.9 μg · h/ml. In the presence of the Food and Drug Administration high-fat meal, subjects had a mean C max of 3.8 ± 0.8 μg/ml, T max of 3.2 ± 1.3 h, and AUC0–∞ of 29.6 ± 4.7 μg · h/ml. These reductions in C max, delays inT max, and modest reductions in AUC0–∞ can be avoided by giving EMB on an empty stomach whenever possible.


Sign in / Sign up

Export Citation Format

Share Document