scholarly journals Pharmacokinetics of Ethambutol under Fasting Conditions, with Food, and with Antacids

1999 ◽  
Vol 43 (3) ◽  
pp. 568-572 ◽  
Author(s):  
Charles A. Peloquin ◽  
Amy E. Bulpitt ◽  
George S. Jaresko ◽  
Roger W. Jelliffe ◽  
James M. Childs ◽  
...  

ABSTRACT Ethambutol (EMB) is the most frequent “fourth drug” used for the empiric treatment of Mycobacterium tuberculosis and a frequently used drug for infections caused by Mycobacterium avium complex. The pharmacokinetics of EMB in serum were studied with 14 healthy males and females in a randomized, four-period crossover study. Subjects ingested single doses of EMB of 25 mg/kg of body weight under fasting conditions twice, with a high-fat meal, and with aluminum-magnesium antacid. Serum was collected for 48 h and assayed by gas chromatography-mass spectrometry. Data were analyzed by noncompartmental methods and by a two-compartment pharmacokinetic model with zero-order absorption and first-order elimination. Both fasting conditions produced similar results: a mean (± standard deviation) EMB maximum concentration of drug in serum (C max) of 4.5 ± 1.0 μg/ml, time to maximum concentration of drug in serum (T max) of 2.5 ± 0.9 h, and area under the concentration-time curve from 0 h to infinity (AUC0–∞) of 28.9 ± 4.7 μg · h/ml. In the presence of antacids, subjects had a mean C maxof 3.3 ± 0.5 μg/ml, T max of 2.9 ± 1.2 h, and AUC0–∞ of 27.5 ± 5.9 μg · h/ml. In the presence of the Food and Drug Administration high-fat meal, subjects had a mean C max of 3.8 ± 0.8 μg/ml, T max of 3.2 ± 1.3 h, and AUC0–∞ of 29.6 ± 4.7 μg · h/ml. These reductions in C max, delays inT max, and modest reductions in AUC0–∞ can be avoided by giving EMB on an empty stomach whenever possible.

2005 ◽  
Vol 49 (6) ◽  
pp. 2407-2411 ◽  
Author(s):  
Ing-Kye Sim ◽  
Timothy M. E. Davis ◽  
Kenneth F. Ilett

ABSTRACT Piperaquine (PQ) is an antimalarial drug whose high lipid solubility suggests that its absorption can be increased by a high-fat meal. We examined the pharmacokinetics of PQ phosphate (500 mg given orally) in the fasting state and after a high-fat meal in eight healthy Caucasian volunteers (randomized crossover). Plasma PQ concentration-time profiles were analyzed by using noncompartmental pharmacokinetic analysis. In the fed state, the geometric mean C max increased by 213%, from 21.0 to 65.8 μg/liter (P < 0.001). The time of C max was not significantly different between the fasting and fed states. The geometric mean area under the concentration-time curve from zero onward (AUC0-∞) increased by 98%, from 3,724 to 7,362 μg h/liter (P = 0.006). The oral bioavailability of PQ relative to the fasting state was 121% greater after the high-fat meal (95% confidence interval, 26 to 216% increase; P = 0.020). The side effects, postural blood pressure changes, electrocardiographic corrected QT interval, serum glucose, and other biochemical and hematological indices were similar in the fasting and fed states over 28 days of follow-up.


2008 ◽  
Vol 53 (3) ◽  
pp. 958-966 ◽  
Author(s):  
Gopal Krishna ◽  
Allen Moton ◽  
Lei Ma ◽  
Matthew M. Medlock ◽  
James McLeod

ABSTRACT A four-part, randomized, crossover study with healthy subjects evaluated the effects of gastric pH, the dosing frequency and prandial state, food consumption timing, and gastric motility on the absorption of posaconazole. In part 1, a single dose (SD) of posaconazole (400 mg) was administered alone or with an acidic beverage or a proton pump inhibitor (PPI), or both. In part 2, posaconazole (400 mg twice daily and 200 mg four times daily) was administered for 7 days with and without a nutritional supplement (Boost). In part 3, an SD of posaconazole (400 mg) was administered while the subjects were fasting and before, during, and after a high-fat meal. In part 4, an SD of posaconazole (400 mg) and the nutritional supplement were administered alone, with metoclopramide, and with loperamide. Compared to the results obtained with posaconazole alone, administration with an acidic beverage increased the posaconazole maximum concentration in plasma (C max) and the area under the concentration-time curve (AUC) by 92% and 70%, respectively, whereas a higher gastric pH decreased the posaconazole C max and AUC by 46% and 32%, respectively. Compared to the results obtained with posaconazole alone, posaconazole at 400 mg or at 200 mg plus the nutritional supplement increased the posaconazole C max and AUC by 65% and 66%, respectively, and by up to 137% and 161%, respectively. Administration before a high-fat meal increased the C max and the AUC by 96% and 111%, respectively, while administration during and after the meal increased the C max and the AUC by up to 339% and 387%, respectively. Increased gastric motility decreased the C max and the AUC by 21% and 19%, respectively. Strategies to maximize posaconazole exposure in patients with absorption difficulties include administration with or after a high-fat meal, with any meal or nutritional supplement, with an acidic beverage, or in divided doses and the avoidance of proton pump inhibitors.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S673-S673
Author(s):  
Jeffrey Pearson ◽  
Yazed S Alsowaida ◽  
B S Pharm ◽  
David W Kubiak ◽  
Mary P Kovacevic ◽  
...  

Abstract Background Current guidelines endorse area under the concentration-time curve (AUC)-based monitoring over trough-only monitoring for systemic vancomycin. Vancomycin AUC can be estimated using either Bayesian modeling software or first-order pharmacokinetic (PK) calculations. The objective of this pilot study was to evaluate and compare the efficiency and feasibility of these two approaches for calculating the estimated vancomycin AUC. Methods A single-center crossover study was conducted in four medical/surgical units at Brigham and Women’s Hospital over a 3-month time period. All adult patients who received vancomycin were included. Patients were excluded if they were receiving vancomycin for surgical prophylaxis, were on hemodialysis, if vancomycin was being dosed by level, or if vancomycin levels were never drawn. The primary endpoint was the amount of time study team members spent calculating the estimated AUC and determining regimen adjustments with Bayesian modeling compared to first-order PK calculations. Secondary endpoints included the number of vancomycin levels drawn and the percent of those drawn that were usable for AUC calculations. Results One hundred twenty-four patients received vancomycin during the study, of whom 47 met inclusion criteria. The most likely reasons for exclusion were receiving vancomycin for surgical prophylaxis (n=40) or never having vancomycin levels drawn (n=32). The median time taken to assess levels in the Bayesian arm was 9.3 minutes [interquartile range (IQR) 7.8-12.4] versus 6.8 minutes (IQR 4.8-8.0) in the 2-level PK arm (p=0.004). However, if Bayesian software is integrated into the electronic health record (EHR), the median time to assess levels was 3.8 minutes (IQR 2.3-6.8, p=0.019). In the Bayesian arm, 30 of 34 vancomycin levels (88.2%) were usable for AUC calculations, compared to 28 of 58 (48.3%) in the 2-level PK arm. Conclusion With EHR integration, the use of Bayesian software to calculate the AUC was more efficient than first-order PK calculations. Additionally, vancomycin levels were more likely to be usable in the Bayesian arm, thereby avoiding delays in estimating the vancomycin AUC. Disclosures All Authors: No reported disclosures


1997 ◽  
Vol 41 (10) ◽  
pp. 2196-2200 ◽  
Author(s):  
L J Lee ◽  
B Hafkin ◽  
I D Lee ◽  
J Hoh ◽  
R Dix

The effects of food and sucralfate on the pharmacokinetics of levofloxacin following the administration of a single 500-mg oral dose were investigated in a randomized, three-way crossover study with young healthy subjects (12 males and 12 females). Levofloxacin was administered under three conditions: fasting, fed (immediately after a standardized high-fat breakfast), and fasting with sucralfate given 2 h following the administration of levofloxacin. The concentrations of levofloxacin in plasma and urine were determined by high-pressure liquid chromatography. By noncompartmental methods, the maximum concentration of drug in serum (Cmax), the time to Cmax (Tmax), the area under the concentration-time curve (AUC), half-life (t1/2), clearance (CL/F), renal clearance (CLR), and cumulative amount of levofloxacin in urine (Ae) were estimated. The individual profiles of the drug concentration in plasma showed little difference among the three treatments. The only consistent effect of the coadministration of levofloxacin with a high-fat meal for most subjects was that levofloxacin absorption was delayed and Cmax was slightly reduced (Tmax, 1.0 and 2.0 h for fasting and fed conditions, respectively [P = 0.002]; Cmax, 5.9 +/- 1.3 and 5.1 +/- 0.9 microg/ml [90% confidence interval = 0.79 to 0.94] for fasting and fed conditions, respectively). Sucralfate, which was administered 2 h after the administration of levofloxacin, appeared to have no effect on levofloxacin's disposition compared with that under the fasting condition. Mean values of Cmax and AUC from time zero to infinity were 6.7 +/- 3.2 microg/ml and 47.9 +/- 8.4 microg x h/ml, respectively, following the administration of sucralfate compared to values of 5.9 +/- 1.3 microg/ml and 50.5 +/- 8.1 microg x h/ml, respectively, under fasting conditions. The mean t1/2, CL/F, CLR, and Ae values were similar among all three treatment groups. In conclusion, the absorption of levofloxacin was slightly delayed by food, although the overall bioavailability of levofloxacin following a high-fat meal was not altered. Finally, sucralfate did not alter the disposition of levofloxacin when sucralfate was given 2 h after the administration of the antibacterial agent, thus preventing a potential drug-drug interaction.


2019 ◽  
Vol 104 (6) ◽  
pp. e49.2-e49
Author(s):  
M Pfiffner ◽  
V Gotta ◽  
E Berger-Olah ◽  
M Pfister ◽  
P Vonbach

BackgroundNalbuphine is a mixed agonist-antagonist opioid analgesic agent frequently used in paediatrics, and licensed for parenteral use only. Intranasal delivery could be a safe, effective and non-invasive alternative, especially in infants in the acute setting. However, pharmacokinetic (PK) data for this route of administration is completely lacking. The aim of this study was to assess PK of nalbuphine in infants 1–3 months after single intravenous (0.05 mg/kg) and intranasal (0.1 mg/kg) application, respectively.MethodsWe conducted a prospective, single centre, open-label pharmacokinetic study in infants 1–3 months undergoing sepsis workup in the emergency unit. Included infants received alternating nalbuphine as 0.05 mg/kg intravenous bolus or as 0.1 mg/kg intranasal spray. PK samples were taken at 3 pre-defined time points (15, 30 and max. 240 min post-dose before discharge). Area under the concentration-time curve (AUC0-Tlast, and AUC0-infinity for i.v.) was calculated using noncompartmental analysis and was compared between groups using Wilcoxon test. Further parameters derived included maximum concentration (Cmax), time of maximum concentration (Tmax for i.n.) and terminal half-life (t1/2).ResultsA total of 31 patients were included in the analysis. Median age was 55 days [interquartile range 38–63] in the intranasal (N=20) and 42 [37–76] days in the iv group (N=11). Median AUC0-Tlast was 7.6 (5.4–10.4) mcg*h/L following intranasal versus 7.9 (6.0–14.7) mcg*h/L for iv administration (p=0.46). AUC0-Tlast (i.v.) covered 80 [68–83]% of AUC0-infinity. Median Cmax was 4.5 [3.5–5.6] mcg/L (i.n.) versus 6.5 [5.3–15.9] mcg/L (i.v.) (p=0.014), t1/22.4 [1.3–2.8] h (i.n.) versus 1.3 [1.1–1.5] h (i.v.) (p=0.021). Tmax occurred 37 [32–65] min after intranasal administration.ConclusionThis first PK study of intranasal nalbuphine in infants suggests that 0.1 mg/kg i.n. dosing provides similar exposure as 0.05 mg/kg i.v. in infants in terms of AUC, and hence intranasal bioavailability close to 50%.Disclosure(s)Nothing to disclose


2000 ◽  
Vol 44 (11) ◽  
pp. 2948-2953 ◽  
Author(s):  
F. B. Oleson ◽  
C. L. Berman ◽  
J. B. Kirkpatrick ◽  
K. S. Regan ◽  
J.-J. Lai ◽  
...  

ABSTRACT Daptomycin is a novel lipopeptide antibiotic with potent bactericidal activity against most clinically important gram-positive bacteria, including resistant strains. Daptomycin has been shown to have an effect on skeletal muscle. To guide the clinical dosing regimen with the potential for the least effect on skeletal muscle, two studies were conducted with dogs to compare the effects of repeated intravenous administration every 24 h versus every 8 h for 20 days. The data suggest that skeletal-muscle effects were more closely related to the dosing interval than to either the maximum concentration of the drug in plasma or the area under the concentration-time curve. Both increases in serum creatine phosphokinase activity and the incidence of myopathy observed at 25 mg/kg of body weight every 8 h were greater than those observed at 75 mg/kg every 24 h despite the lower maximum concentration of drug in plasma. Similarly, the effects observed at 25 mg/kg every 8 h were greater than those observed at 75 mg/kg every 24 h at approximately the same area under the concentration-time curve from 0 to 24 h. Once-daily administration appeared to minimize the potential for daptomycin-related skeletal-muscle effects, possibly by allowing for more time between doses for repair of subclinical effects. Thus, these studies with dogs suggest that once-daily dosing of daptomycin in humans should have the potential to minimize skeletal-muscle effects. In fact, interim results of ongoing clinical trials, which have focused on once-daily dosing, appear to be consistent with this conclusion.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2017 ◽  
Vol 28 (1) ◽  
pp. 85-92
Author(s):  
Christoph P. Hornik ◽  
Nikolas J. Onufrak ◽  
P. Brian Smith ◽  
Michael Cohen-Wolkowiez ◽  
Matthew M. Laughon ◽  
...  

AbstractBackgroundThe relationship between sildenafil dosing, exposure, and systemic hypotension in infants is incompletely understood.ObjectivesThe aim of this study was to characterise the relationship between predicted sildenafil exposure and hypotension in hospitalised infants.MethodsWe extracted information on sildenafil dosing and clinical characteristics from electronic health records of 348 neonatal ICUs from 1997 to 2013, and we predicted drug exposure using a population pharmacokinetic model.ResultsWe identified 232 infants receiving sildenafil at a median dose of 3.2 mg/kg/day (2.0, 6.0). The median steady-state area under the concentration–time curve over 24 hours (AUC24,SS) and maximum concentration of sildenafil (Cmax,SS,SIL) were 712 ng×hour/ml (401, 1561) and 129 ng/ml (69, 293), respectively. Systemic hypotension occurred in 9% of the cohort. In multivariable analysis, neither dosing nor exposure were associated with systemic hypotension: odds ratio=0.96 (95% confidence interval: 0.81, 1.14) for sildenafil dose; 0.87 (0.59, 1.28) for AUC24,SS; 1.19 (0.78, 1.82) for Cmax,SS,SIL.ConclusionsWe found no association between sildenafil dosing or exposure with systemic hypotension. Continued assessment of sildenafil’s safety profile in infants is warranted.


2015 ◽  
Vol 90 (5) ◽  
pp. 555-560 ◽  
Author(s):  
P.K. Sanyal ◽  
D. Rawte ◽  
A.E. Kerketta ◽  
N.K. Kumbhakar ◽  
D. Kumar ◽  
...  

AbstractThe influence of diet type and pre-treatment fasting on the kinetic disposition of albendazole was evaluated in Sahiwal heifers following oral and intra-ruminal administration of the drug. The anthelmintically active moiety albendazole sulphoxide appeared early and was eliminated early in cattle offered green fodder, with decreased maximum concentration (Cmax) and area under concentration–time curve (AUC) when the drug was administered both through oral and intra-ruminal routes. Further, the elimination half-life (t½β) revealed significantly increased values for albendazole sulphoxide in cattle administered albendazole through the intra-ruminal route. An increased AUC and t½β is reflective of increased bioavailability of albendazole in animals offered dry fodder. Increased values (P <  0.05) of Cmax, time to Cmax (Tmax), AUC and t½β for albendazole sulphoxide occurred in cattle with a pre-treatment 24-h fast, resulting in its increased bioavailability. Extrapolation of data of the active metabolite albendazole sulphoxide levels in terms of drug–parasite contact revealed increased exposure of parasites to the drug in cattle administered albendazole through the intra-ruminal route and with 24-h pre-treatment fasting.


Sign in / Sign up

Export Citation Format

Share Document