scholarly journals Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing

2013 ◽  
Vol 219 (2) ◽  
pp. 173-182 ◽  
Author(s):  
P Brandimarti ◽  
J M Costa-Júnior ◽  
S M Ferreira ◽  
A O Protzek ◽  
G J Santos ◽  
...  

Insulin clearance plays a major role in glucose homeostasis and insulin sensitivity in physiological and/or pathological conditions, such as obesity-induced type 2 diabetes as well as diet-induced obesity. The aim of the present work was to evaluate cafeteria diet-induced obesity-induced changes in insulin clearance and to explain the mechanisms underlying these possible changes. Female Swiss mice were fed either a standard chow diet (CTL) or a cafeteria diet (CAF) for 8 weeks, after which we performed glucose tolerance tests, insulin tolerance tests, insulin dynamics, and insulin clearance tests. We then isolated pancreatic islets for ex vivo glucose-stimulated insulin secretion as well as liver, gastrocnemius, visceral adipose tissue, and hypothalamus for subsequent protein analysis by western blot and determination of mRNA levels by real-time RT-PCR. The cafeteria diet induced insulin resistance, glucose intolerance, and increased insulin secretion and total insulin content. More importantly, mice that were fed a cafeteria diet demonstrated reduced insulin clearance and decay rate as well as reduced insulin-degrading enzyme (IDE) protein and mRNA levels in liver and skeletal muscle compared with the control animals. Furthermore, the cafeteria diet reduced IDE expression and alternative splicing in the liver and skeletal muscle of mice. In conclusion, a cafeteria diet impairs glucose homeostasis by reducing insulin sensitivity, but it also reduces insulin clearance by reducing IDE expression and alternative splicing in mouse liver; however, whether this mechanism contributes to the glucose intolerance or helps to ameliorate it remains unclear.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Camila Lubaczeuski ◽  
Luciana Mateus Gonçalves ◽  
Jean Franciesco Vettorazzi ◽  
Mirian Ayumi Kurauti ◽  
Junia Carolina Santos-Silva ◽  
...  

The aim of this study was to investigate the effect of subdiaphragmatic vagotomy on insulin sensitivity, secretion, and degradation in metabolic programmed mice, induced by a low-protein diet early in life, followed by exposure to a high-fat diet in adulthood. Weaned 30-day-old C57Bl/6 mice were submitted to a low-protein diet (6% protein). After 4 weeks, the mice were distributed into three groups: LP group, which continued receiving a low-protein diet; LP + HF group, which started to receive a high-fat diet; and LP + HFvag group, which underwent vagotomy and also was kept at a high-fat diet. Glucose-stimulated insulin secretion (GSIS) in isolated islets, ipGTT, ipITT, in vivo insulin clearance, and liver expression of the insulin-degrading enzyme (IDE) was accessed. Vagotomy improved glucose tolerance and reduced insulin secretion but did not alter adiposity and insulin sensitivity in the LP + HFvag, compared with the LP + HF group. Improvement in glucose tolerance was accompanied by increased insulinemia, probably due to a diminished insulin clearance, as judged by the lower C-peptide : insulin ratio, during the ipGTT. Finally, vagotomy also reduced liver IDE expression in this group. In conclusion, when submitted to vagotomy, the metabolic programmed mice showed improved glucose tolerance, associated with an increase of plasma insulin concentration as a result of insulin clearance reduction, a phenomenon probably due to diminished liver IDE expression.


2014 ◽  
Vol 112 (6) ◽  
pp. 900-907 ◽  
Author(s):  
Luiz F. Rezende ◽  
Rafael L. Camargo ◽  
Renato C. S. Branco ◽  
Ana P. G. Cappelli ◽  
Antonio C. Boschero ◽  
...  

Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.


2016 ◽  
Vol 229 (3) ◽  
pp. 221-232 ◽  
Author(s):  
Mirian A Kurauti ◽  
José M Costa-Júnior ◽  
Sandra M Ferreira ◽  
Gustavo J dos Santos ◽  
André O P Protzek ◽  
...  

The aim of this study was to investigate the insulin clearance in diet-induced obese (DIO) mice submitted to acute endurance exercise (3h of treadmill exercise at 60–70% VO2max). Glucose-stimulated insulin secretion in isolated islets; ipGTT; ipITT; ipPTT; in vivo insulin clearance; protein expression in liver, skeletal muscle, and adipose tissue (insulin degrading enzyme (IDE), insulin receptor subunitβ(IRβ), phospho-Akt (p-Akt) and phospho-AMPK (p-AMPK)), and the activity of IDE in the liver and skeletal muscle were accessed. In DIO mice, acute exercise reduced fasting glycemia and insulinemia, improved glucose and insulin tolerance, reduced hepatic glucose production, and increased p-Akt protein levels in liver and skeletal muscle and p-AMPK protein levels in skeletal muscle. In addition, insulin secretion was reduced, whereas insulin clearance and the expression of IDE and IRβ were increased in liver and skeletal muscle. Finally, IDE activity was increased only in skeletal muscle. In conclusion, we propose that the increased insulin clearance and IDE expression and activity, primarily, in skeletal muscle, constitute an additional mechanism, whereby physical exercise reduces insulinemia in DIO mice.


2010 ◽  
Vol 298 (2) ◽  
pp. R320-R328 ◽  
Author(s):  
E. C. Vanzela ◽  
R. A. Ribeiro ◽  
C. A. Machado de Oliveira ◽  
F. B. Rodrigues ◽  
M. L. Bonfleur ◽  
...  

Insulin resistance during pregnancy is counteracted by enhanced insulin secretion. This condition is aggravated by obesity, which increases the risk of gestational diabetes. Therefore, pancreatic islet functionality was investigated in control nonpregnant (C) and pregnant (CP), and cafeteria diet-fed nonpregnant (Caf), and pregnant (CafP) obese rats. Isolated islets were used for measurements of insulin secretion (RIA), NAD(P)H production (MTS), glucose oxidation (14CO2 production), intracellular Ca2+ levels (fura-2 AM), and gene expression (real-time PCR). Impaired glucose tolerance was clearly established in Caf and CafP rats at the 14th wk on a diet. Insulin secretion induced by direct depolarizing agents such as KCl and tolbutamide and increasing concentrations of glucose was significantly reduced in Caf, compared with C islets. This reduction was not observed in islets from CP and CafP rats. Accordingly, the glucose oxidation and production of reduced equivalents were increased in CafP islets. The glucose-induced Ca2+ increase was significantly lower in Caf and higher in CafP, compared with all other groups. CP and CafP islets demonstrated an increased Ca2+ oscillation frequency, compared with both C and Caf islets, and the amplitude of oscillations was augmented in CafP, compared with Caf islets. In addition, Cavα1.2 and SERCA2a mRNA levels were reduced in Caf islets. Cavα1.2, but not SERCA2a, mRNA was normalized in CafP islets. In conclusion, cafeteria diet-induced obesity impairs insulin secretion. This alteration is related to the impairment of Ca2+ handling in pancreatic islets, in especial Ca2+ influx, a defect that is reversed during pregnancy allowing normalization of insulin secretion.


2019 ◽  
Author(s):  
Zhengtang Qi ◽  
Jie Xia ◽  
Xiangli Xue ◽  
Jiatong Liu ◽  
Xue Zhang ◽  
...  

AbstractInhibiting glycemic response to HPA axis contributes to glycemic control for diabetic patients. Here, mice were subjected to high-fat diet and intermittent chronic stress, and glucose homeostasis and lipolysis were determined during the intervention. Firstly, we found that glucose intolerance appears at the earliest, followed by reduced insulin sensitivity and increased epinephrine (EPI) sensitivity in the early stage of diet-induced obesity. Next we investigated whether chronic stress impairs glycemic control and which mediates its effects. Short-term stress training raises serum and skeletal muscle myonectin (Myn) levels and improves glucose intolerance. Stress attenuates blood glucose and glycerol responses to EPI, but enhances lipolytic response to EPI in adipose tissues. Myn overexpression in vivo improves glucose tolerance and enhances insulin sensitivity at the cost of blunting glycemic responses to EPI. Myn knockdown reduces beneficial effects of stress or exercise on glucose homeostasis. Together, myonectin is a stress-induced myokine that readjusts glycemic and metabolic responses to HPA axis, and thus prevent the progression of glucose intolerance and obesity.Graphical AbstractOne Sentence SummaryChronic stress breaks glucose intolerance cycle to resist diet-induced obesity, through myonectin-mediated inhibition of glycemic response to epinephrine (EPI) and activation of insulin signaling in adipose tissues.HighlightsEPI sensitivity increases after glucose intolerance and with reduced insulin sensitivity in diet-induced obesityChronic stress blunts glycemic responses to EPI and increases myonectin levels in serum and skeletal muscleMyonectin attenuates glycemic response to EPI and improves metabolic profile in HFD-fed miceReducing myonectin reverses beneficial effects of stress on glucose homeostasis


Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3005-3017 ◽  
Author(s):  
Katie T. Y. Lee ◽  
Subashini Karunakaran ◽  
Maggie M. Ho ◽  
Susanne M. Clee

Recently, novel inbred mouse strains that are genetically distinct from the commonly used models have been developed from wild-caught mice. These wild-derived inbred strains have been included in many of the large-scale genomic projects, but their potential as models of altered obesity and diabetes susceptibility has not been assessed. We examined obesity and diabetes-related traits in response to high-fat feeding in two of these strains, PWD/PhJ (PWD) and WSB/EiJ (WSB), in comparison with C57BL/6J (B6). Young PWD mice displayed high fasting insulin levels, although they had normal insulin sensitivity. PWD mice subsequently developed a much milder and delayed-onset obesity compared with B6 mice but became as insulin resistant. PWD mice had a robust first-phase and increased second-phase glucose-stimulated insulin secretion in vivo, rendering them more glucose tolerant. WSB mice were remarkably resistant to diet-induced obesity and maintained very low fasting insulin throughout the study. WSB mice exhibited more rapid glucose clearance in response to an insulin challenge compared with B6 mice, consistent with their low percent body fat. Interestingly, in the absence of a measurable in vivo insulin secretion, glucose tolerance of WSB mice was better than B6 mice, likely due to their enhanced insulin sensitivity. Thus PWD and WSB are two obesity-resistant strains with unique insulin secretion phenotypes. PWD mice are an interesting model that dissociates hyperinsulinemia from obesity and insulin resistance, whereas WSB mice are a model of extraordinary resistance to a high-fat diet.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2014 ◽  
Vol 171 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Stine J Petersson ◽  
Louise L Christensen ◽  
Jonas M Kristensen ◽  
Rikke Kruse ◽  
Marianne Andersen ◽  
...  

ObjectiveRecent studies have indicated that serum testosterone in aging men is associated with insulin sensitivity and expression of genes involved in oxidative phosphorylation (OxPhos), and that testosterone treatment increases lipid oxidation. Herein, we investigated the effect of testosterone therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels.MethodsSkeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13) for 6 months. Insulin sensitivity and substrate oxidation were assessed by euglycemic–hyperinsulinemic clamp and indirect calorimetry. Muscle mRNA levels and protein abundance and phosphorylation of enzymes involved in mitochondrial biogenesis, OxPhos, and lipid metabolism were examined by quantitative real-time PCR and western blotting.ResultsDespite an increase in lipid oxidation (P<0.05), testosterone therapy had no effect on insulin sensitivity or mRNA levels of genes involved in mitochondrial biogenesis (PPARGC1A,PRKAA2, andPRKAG3), OxPhos (NDUFS1,ETFA,SDHA,UQCRC1, andCOX5B), or lipid metabolism (ACADVL,CD36,CPT1B,HADH, andPDK4). Consistently, protein abundance of OxPhos subunits encoded by both nuclear (SDHAandUQCRC1) and mitochondrial DNA (ND6) and protein abundance and phosphorylation of AMP-activated protein kinase and p38 MAPK were unaffected by testosterone therapy.ConclusionThe beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels.


2009 ◽  
Vol 297 (1) ◽  
pp. E124-E133 ◽  
Author(s):  
Rodrigo P. A. Barros ◽  
Chiara Gabbi ◽  
Andrea Morani ◽  
Margaret Warner ◽  
Jan-Åke Gustafsson

Glucose uptake and homeostasis are regulated mainly by skeletal muscle (SM), white adipose tissue (WAT), pancreas, and the liver. Participation of estradiol in this regulation is still under intense investigation. We have demonstrated that, in SM of male mice, expression of the insulin-regulated glucose transporter (GLUT)4 is reduced by estrogen receptor (ER)β agonists. In the present study, to investigate the relative contributions of ERα and ERβ in glucose homeostasis, we examined the effects of tamoxifen (Tam) on GLUT4 expression in SM and WAT in wild-type (WT) and ER−/− mice. ERβ−/− mice were characterized by fasting hypoglycemia, increased levels of SM GLUT4, pancreatic islet hypertrophy, and a belated rise in plasma insulin in response to a glucose challenge. ERα−/− mice, on the contrary, were hyperglycemic and glucose intolerant, and expression of SM GLUT4 was markedly lower than in WT mice. Tam had no effect on glucose tolerance or insulin sensitivity in WT mice. In ERα−/− mice, Tam increased GLUT4 and improved insulin sensitivity. i.e., it behaved as an ERβ antagonist in SM but had no effect on WAT. In ERβ−/− mice, Tam did not affect GLUT4 in SM but acted as an ERα antagonist in WAT, decreasing GLUT4. Thus, in the interplay between ERα and ERβ, ERβ-mediated repression of GLUT4 predominates in SM but ERα-mediated induction of GLUT4 predominates in WAT. This tissue-specific difference in dominance of one ER over the other is reflected in the ratio of the expression of the two receptors. ERα predominates in WAT and ERβ in SM.


2012 ◽  
Vol 108 (8) ◽  
pp. 1511-1518 ◽  
Author(s):  
Jéferson F. Goularte ◽  
Maria B. C. Ferreira ◽  
Gilberto L. Sanvitto

Obesity affects a large number of people around the world and appears to be the result of changes in food intake, eating habits and physical activity levels. Changes in dietary patterns and physical exercise are therefore strongly recommended to treat obesity and its complications. The present study tested the hypothesis that obesity and metabolic changes produced by a cafeteria diet can be prevented with dietary changes and/or physical exercise. A total of fifty-six female Wistar rats underwent one of five treatments: chow diet; cafeteria diet; cafeteria diet followed by a chow diet; cafeteria diet plus exercise; cafeteria diet followed by a chow diet plus exercise. The duration of the experiment was 34 weeks. The cafeteria diet resulted in higher energy intake, weight gain, increased visceral adipose tissue and liver weight, and insulin resistance. The cafeteria diet followed by the chow diet resulted in energy intake, body weight, visceral adipose tissue and liver weight and insulin sensitivity equal to that of the controls. Exercise increased total energy intake at week 34, but produced no changes in the animals' body weight or adipose tissue mass. However, insulin sensitivity in animals subjected to exercise and the diet was similar to that of the controls. The present study found that exposure to palatable food caused obesity and insulin resistance and a diet change was sufficient to prevent cafeteria diet-induced obesity and to maintain insulin sensitivity at normal levels. In addition, exercise resulted in normal insulin sensitivity in obese rats. These results may help to develop new approaches for the treatment of obesity and type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document