Meiotic maturation failure induced by DICER1 deficiency is derived from primary oocyte ooplasm

Reproduction ◽  
2009 ◽  
Vol 137 (4) ◽  
pp. 625-632 ◽  
Author(s):  
Deidre M Mattiske ◽  
Li Han ◽  
Jeffrey R Mann

RNA interference (RNAi) has diverse functions across cellular processes, including a role in the development of the mammalian oocyte. Mouse primary oocytes deficient in the key RNAi enzyme DICER1 exhibit pronounced defects in chromosome congression and spindle formation during meiotic maturation. The cause of this meiotic maturation failure is unknown. In this study, observations of chromosomes and spindle microtubules during prometaphase in DICER1-deficient oocytes indicate that chromosome congression and spindle formation are overtly normal. Spindle breakdown and chromosome displacement occur after the metaphase plate has formed, during the metaphase to anaphase transition. We hypothesised that this defect could be attributed to either RNAi-mediated regulation of nuclear factors, such as the regulation of centromere chromatin assembly, or the regulation of mRNA expression within the cytoplasm. By transplanting germinal vesicles between DICER1-deficient and wild-type primary oocytes, we show that, unexpectedly, the meiotic failure is not caused by a deficiency derived from the germinal vesicle component. Instead, we reveal that the ooplasm of primary oocytes contains DICER1-dependent factors that are crucial for chromosome segregation and meiotic maturation.

2020 ◽  
Vol 134 (1) ◽  
pp. jcs251025
Author(s):  
Zoë Geraghty ◽  
Christina Barnard ◽  
Pelin Uluocak ◽  
Ulrike Gruneberg

ABSTRACTErrors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin–kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule–kinetochore attachment. However, the molecular mechanisms by which astrin–kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule–kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule–kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.


2009 ◽  
Vol 20 (3) ◽  
pp. 963-972 ◽  
Author(s):  
Paula M. Grissom ◽  
Thomas Fiedler ◽  
Ekaterina L. Grishchuk ◽  
Daniela Nicastro ◽  
Robert R. West ◽  
...  

Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.


Reproduction ◽  
2003 ◽  
pp. 731-738 ◽  
Author(s):  
W Ma ◽  
Y Hou ◽  
QY Sun ◽  
XF Sun ◽  
WH Wang

Centromere proteins (CENPs) are required for the attachment of microtubules to chromosomes. However, their structure and mechanism of action are not well understood, especially in mammalian meiosis. The present study was conducted to examine (i). whether a human nuclear centromere autoantibody can be used to localize the CENPs in pig oocytes and (ii). the dynamics of CENPs and their association with microtubules and chromosomes during meiosis in pigs. Oocytes at various stages were double-labelled for CENPs, chromosomes or microtubules and examined by confocal fluorescence microscopy. Quantification of tubulin and CENPs in the oocytes was determined by immunoblotting. CENPs were detected in all oocytes from germinal vesicle (GV) to metaphase II (MII) stages. The changes in the location were associated with chromosome movement and spindle formation. Tubulin was detected in the oocytes from GV to MII stages and no differences in content were observed. Two major CENPs at 80 kDa (CENP-B) and 50 kDa (CENP-D) were also found in the oocytes by the autoantibody and its content was significantly lower in the oocytes at GV stage compared with oocytes at other stages. These results indicate that the autoantibody used in this study can be used to detect CENPs in the kinetochores, and the proteins are expressed in pig oocytes at all stages during meiosis. As the localization of CENPs is associated with spindle formation and chromosome movement, CENPs may participate in cell cycle changes during meiosis in mammals.


2020 ◽  
Author(s):  
Ivan Ramirez ◽  
Ankur A. Gholkar ◽  
Erick F. Velasquez ◽  
Xiao Guo ◽  
Jorge Z. Torres

ABSTRACTMyosins are ATP-dependent actin-based molecular motors critical for diverse cellular processes like intracellular trafficking, cell motility and cell invasion. During cell division, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring of the spindle to the cortex, and positioning of the spindle to the cell mid-plane, while myosin MYO2 functions in actomyosin ring contraction to promote cytokinesis. However, myosins are regulated by myosin regulatory light chains (RLCs), and whether RLCs are important for cell division has remained unexplored. Here, we have determined that the previously uncharacterized myosin RLC Myl5 associates with the mitotic spindle and is required for cell division. Myl5 localized to the mitotic spindle poles and spindle microtubules during early mitosis, an area overlapping with MYO10 localization. Depletion of Myl5 led to defects in chromosome congression and to a slower progression through mitosis. We propose that Myl5 is a novel myosin RLC that is important for cell division.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 171-180 ◽  
Author(s):  
F.Z. Sun ◽  
R.M. Moor

The present studies have been undertaken to investigate the interactions that occur between the nucleus and cytoplasm of ovine oocytes at various stages during meiotic maturation. We report that the nucleus of ovine fully grown dictyate stage oocytes can be efficiently removed by a microsurgical enucleation procedure. It is demonstrated that between the initiation of maturation and germinal vesicle breakdown certain newly synthesized polypeptides are selectively sequestered in the oocyte nucleus and the major sequestered polypeptide has a relative molecular mass of 28,000, which represent at least 9% of the total labelled polypeptides transferred to the oocyte nucleus during the first 4 h of maturation. The experiments provide evidence that the removal of the oocyte nucleus at various times before germinal vesicle breakdown (GVBD) does not prevent the major series of changes in protein synthesis that occurs after entry into a metaphase. We conclude therefore that the mixing of the nucleoplasm and cytoplasm is not essential for the initiation or progression of the protein reprogramming process during maturation. In addition, the experiments show that the development of the ability to condense chromatin during ovine oocyte maturation is independent of the oocyte nucleus. The combined results strongly support the hypothesis that the extensive series of translational changes that occur in oocytes during maturation are controlled by cytoplasmic rather than nuclear factors.


2020 ◽  
Author(s):  
Zoë Geraghty ◽  
Christina Barnard ◽  
Pelin Uluocak ◽  
Ulrike Gruneberg

AbstractErrors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The Astrin-Kinastrin/SKAP complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which Astrin-Kinastrin fulfils these diverse roles are not fully understood. Here we characterise a direct interaction between Astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on Astrin as well as four Plk1 phosphorylation sites on Astrin. Regulation of Astrin-Kinastrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that Astrin phosphorylation by Plk1 contributes to this process.SummaryWe demonstrate that Plk1 binds to and phosphorylates the N-terminus of Astrin. This interaction promotes recruitment of the Astrin-complex to kinetochores and stabilises microtubule-kinetochore-attachments in situations when mitosis is delayed.


Zygote ◽  
1997 ◽  
Vol 5 (3) ◽  
pp. 213-217 ◽  
Author(s):  
J. Fulka ◽  
N.L. First ◽  
C. Lee ◽  
J. Fulka ◽  
R.M. Moor

SummaryImmature mouse oocytes (germinal vesicle stage, GV), oocytes at different stages during maturation (prometaphase to anaphase I) and matured oocytes (metaphase II arrested) were cultured in 6-dimethylaminopurine (6-DMAP)-supplemented medium also containing bromodeoxyuridine for the assessment of DNA replication in these cells. Immature oocytes remained arrested at the GV stage and DNA replication was never detected in them. On the other hand, oocytes at the prometaphase to anaphase-telophase I stages responded to 6-DMAP treatment by forming nuclei which synthesised DNA. Mature (metaphase II) oocytes did not respond to 6-DMAP and their chromatin remained condensed. DNA synthesis could even be induced in GV-staged oocytes, but only when they were fused to freshly activated oocytes and incubated in 6-DMAP-supplemented medium.


2021 ◽  
pp. 1-7
Author(s):  
Dongjie Zhou ◽  
Zheng-Wen Nie ◽  
Xiang-Shun Cui

The cytoskeleton plays an orchestrating role in polarized cell growth. Microtubules (MTs) not only play critical roles in chromosome alignment and segregation but also control cell shape, division, and motility. A member of the plus-end tracking proteins, end-binding protein 1 (EB1), regulates MT dynamics and plays vital roles in maintaining spindle symmetry and chromosome alignment during mitosis. However, the role of EB1 in mouse oocyte meiosis remains unknown. Here, we examined the localization patterns and expression levels of EB1 at different stages. EB1 protein level was found to be stable during meiosis. EB1 mainly localized along the spindle and had a similar localization pattern as that of α-tubulin. The EB1 protein was degraded with a Trim-Away method, and the results were further confirmed with western blotting and immunofluorescence. At 12 h of culture after EB1 knockdown (KD), a reduced number of mature MII oocytes were observed. EB1 KD led to spindle disorganization, chromosome misalignment, and missegregation; β-catenin protein binds to actin via the adherens junctional complex, which was significantly reduced in the EB1 KD oocytes. Collectively, we propose that the impairment of EB1 function manipulates spindle formation, thereby promoting chromosomal loss, which is expected to fuel aneuploidy and possibly fertilization failure.


1979 ◽  
Vol 39 (1) ◽  
pp. 1-12
Author(s):  
M. Berrios ◽  
J.M. Bedford

Primary oocytes cannot be fertilized normally; they begin to develop this capacity as meiosis resumes. To elucidate the changes involved in acquisition of their fertilizability, rabbit primary oocytes displaying a germinal vesicle (GV oocytes) were placed in Fallopian tubes inseminated previously with spermatozoa, recovered 2–5 h later and examined by light and electron microscopy. At least 4 aspects of GV oocyte/sperm interaction were abnormal. Although the vestments and oolemma seem normally receptive to spermatozoa, fusion with the oolemma of the primary oocyte did not elicit exocytosis of cortical granules, and consequently multiple entry of spermatozoa into the ooplasm was common. Secondly, the GV oocyte cortex failed to achieve a normal englufment of the anterior part of the sperm head. It sank into the ooplasm capped by only a small rostral vesicle or left the stable inner acrosomal membrane as a patch in the oolemma. Only rarely then was there significant dispersion of the sperm chromatin, and this remained surrounded by nuclear envelope. The persistence of this envelope constitutes a further aberrant feature, for it disappears immediately in secondary oocytes and was absent in primary oocytes in which germinal vesicle breakdown had occurred. The results are discussed with particular reference to current ideas about male pronucleus formation.


Author(s):  
J. J. Kennedy ◽  
B. F. Keegan

The development of the lecithotrophic encapsulated larva of the internally-fertilizing, sublittoral gastropod Turritella communis Risso 1826 was documented using scanning electron microscopy and light microscopy. Encapsulated development was completed in 12 days at 15°C in the laboratory. Spawning occurred above ~10°C. Spawn masses consisted of numerous gelatinous egg capsules, each of which contained ~28 eggs, encased in albumen and fertilizing sperm. The eggs had an average diameter of 139 μm. Fertilization was accomplished by unpaired eupyrene sperm and occurred at the germinal vesicle stage. The developmental sequence followed the typical gastropod pattern, but was unique in a number of respects. Polar lobes were produced during meiotic maturation and early cleavage, with an especially large lobe occurring in association with the first cleavage, which was unequal. The blastula developed into a dorso-ventrally flattened placula at the 70-cell stage. Gastrulation occurred through invagination and epiboly acting together, and was uniquely accompanied by the development of ectodermal microvilli measuring ~ 1 μm in length. Extra-embryonic albumen began to be depleted after the development of the microvilli. It is proposed that the ciliated telotrochal cells gave rise to the pair of statocysts. Torsion was additionally observed to be facilitated by the growth of pre-mantle tissue on the right side and retardation of growth on the left side.


Sign in / Sign up

Export Citation Format

Share Document