scholarly journals A non-genomic signaling pathway shut down by mating changes the estradiol-induced gene expression profile in the rat oviduct

Reproduction ◽  
2010 ◽  
Vol 139 (3) ◽  
pp. 631-644 ◽  
Author(s):  
Alexis Parada-Bustamante ◽  
Pedro A Orihuela ◽  
Mariana Ríos ◽  
Catherina A Cuevas ◽  
Maria Lorena Oróstica ◽  
...  

Estradiol (E2) accelerates oviductal egg transport through intraoviductal non-genomic pathways in unmated rats and through genomic pathways in mated rats. This shift in pathways has been designated as intracellular path shifting (IPS), and represents a novel and hitherto unrecognized effect of mating on the female reproductive tract. We had reported previously that IPS involves shutting down the E2non-genomic pathway up- and downstream of 2-methoxyestradiol. Here, we evaluated whether IPS involves changes in the genomic pathway too. Using microarray analysis, we found that a common group of genes changed its expression in response to E2in unmated and mated rats, indicating that an E2genomic signaling pathway is present before and after mating; however, a group of genes decreased its expression only in mated rats and another group of genes increased its expression only in unmated rats. We evaluated the possibility that this difference is a consequence of an E2non-genomic signaling pathway present in unmated rats, but not in mated rats. Mating shuts down this E2non-genomic signaling pathway up- and downstream of cAMP production. TheStarlevel is increased by E2in unmated rats, but not in mated rats. This is blocked by the antagonist of estrogen receptor ICI 182 780, the adenylyl cyclase inhibitor SQ 22536, and the catechol-O-methyltransferase inhibitor, OR 486. These results indicate that the E2-induced gene expression profile in the rat oviduct differs before and after mating, and this difference is probably mediated by an E2non-genomic signaling pathway operating on gene expression only in unmated rats.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4085-4085
Author(s):  
Giovanni Fernando Torelli ◽  
Roberta Maggio ◽  
Nadia Peragine ◽  
Sabina Chiaretti ◽  
Maria Stefania De Propris ◽  
...  

Abstract Abstract 4085 Poster Board III-1020 Introduction Umbilical cord blood (CB) stem cells are now broadly used in the unrelated stem cell transplant setting and comparative studies with different stem cell sources have shown that CB transplant is characterized by a lower risk of graft-versus-host disease (GVHD). The immaturity of CB T cells has been generally regarded as the main contributing factor accounting for this phenomenon; the possible role played by CB regulatory T cells (Tregs) for the suppression of the allogeneic T-cell response is now under investigation, but very scare data are so far available. Aim of this study was to analyze and compare the functional properties and the gene expression profile of Tregs expanded from CB units with those expanded from the peripheral blood (PB) of adult normal donors. Methods Tregs were purified from mononuclear cells obtained from 23 CB units and from the PB of 13 adult normal donors using the CD4+CD25+ regulatory T-cell isolation kit (Miltenyi Biotec) and expanded for 6 days in 96-well U-Bottom plates coated with the anti-CD3 (5 ug/ml) and anti-CD28 (5 ug/ml) MoAbs in the presence of IL-2 (100 U/ml). Immunophenotypic analyses were performed before and after expansion. To assess their suppressive functions, expanded Tregs were seeded with autologous effector T cells stimulated with allogeneic dendritic cells (DC) pulsed with apoptotic leukemic blasts, then incubated with [3H]-thymidine and counted in a beta-counter. Suppressor activity was measured as [3H]-thymidine incorporation in the presence or absence of Tregs. The IL-10 production capacity of expanded Tregs was tested using an ELISA assay. The two-sided student t test was used to evaluate the significance of differences between groups. Gene expression profile experiments were performed using the HGU133 Plus 2.0 arrays (Affymetrix); statistical analyses were carried out using the dChip software; a t test was used to evaluate the presence of specifically expressed classes of genes. Functional annotation analysis was performed using the DAVID software. Results CB and PB Tregs presented similar immunophenotypic appearances before and after expansion. Im particular, after expansion they presented a comparable expression of surface CD4, CD25, CD62L, CCR5 and CD45RO, and of cytoplasmic CTLA-4 and Foxp3, while they both were negative for the CD45RA antigen, thus indicating the loss of their naïve features. On the contrary, Tregs obtained from CB (n=23) presented a much higher expansion capacity compared to those obtained from PB (n=13): mean fold increase (range), CB 10.3 (1.6-24), PB 3.9 (1.5-10), p 0.003. CB expanded Tregs (n=6) exerted a potent suppressive function on the proliferative reaction of T cells stimulated by allogeneic DC, that resulted inferior even though not significantly compared to that exerted by PB expanded Tregs (n=5): mean fold reduction (range), CB 7.8 (2.5-15.1), PB 14.3 (1.5-23.7), p 0.14. Tregs expanded from CB (n=4) and PB (n=1) presented a high and comparable in vitro IL-10 production capacity: mean pg/ml (range), CB 326.5 (226-426), PB 382. Gene expression profile analysis showed a higher number of upregulated genes in Tregs expanded from CB (n=2) compared to Tregs expanded from PB (n=3); among them, a significant enrichment of genes involved in cell proliferation, cell cycle checkpoints, signal transduction, cell differentiation, apoptosis, TGF-β receptor pathway and the GrNH pathway was observed. This suggests that CB Tregs retain a more undifferentiated program and are characterized by the high expression of genes which might provide an advantage in cell expansion. Finally, when looking at the Foxp3 gene expression levels, no difference was observed between the two populations. Conclusions These results demonstrate that Tregs contained in CB retain an expansion potential superior to that of Tregs isolated from the PB of normal donors, as confirmed by functional analyses and gene profile. Tregs expanded from CB and PB seem to exert a potent and comparable suppressive function of the proliferative effect in mixed lymphocyte reaction assays. The maintaining of the modulatory properties after expansion is confirmed by the expression of the Foxp3 gene and protein, and by the production of IL-10. These data offer further insights into the understanding of the biology of CB transplantation indicating a possible role played by CB Tregs in the suppression of the allogeneic T-cell response. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Caitlin E McDonough-Goldstein ◽  
Kirill Borziak ◽  
Scott Pitnick ◽  
Steve Dorus

Abstract Sexual reproduction in internally fertilizing species requires complex coordination between female and male reproductive systems and among the diverse tissues of the female reproductive tract (FRT). Here, we report a comprehensive, tissue-specific investigation of Drosophila melanogaster FRT gene expression before and after mating. We identified expression profiles that distinguished each tissue, including major differences between tissues with glandular or primarily non-glandular epithelium. All tissues were enriched for distinct sets of genes possessing secretion signals and exhibiting accelerated evolution, as might be expected for genes participating in molecular interactions between the sexes within the FRT extracellular environment. Despite robust transcriptional differences between tissues, post-mating responses were dominated by coordinated transient changes indicative of an integrated systems-level functional response. This comprehensive characterization of gene expression throughout the FRT identifies putative female contributions to post-copulatory events critical to reproduction and potentially reproductive isolation, as well as the putative targets of sexual selection and conflict.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Yijun Yang ◽  
Suwan Qi ◽  
Can shi ◽  
Xiao Han ◽  
Juanpeng Yu ◽  
...  

Abstract Serous ovarian cancer is one of the most fatal gynecological tumors with an extremely low 5-year survival rate. Most patients are diagnosed at an advanced stage with wide metastasis. The dysregulation of genes serves an important role in the metastasis progression of ovarian cancer. Differentially expressed genes (DEGs) between primary tumors and metastases of serous ovarian cancer were screened out in the gene expression profile of GSE73168 from Gene Expression Omnibus (GEO). Cytoscape plugin cytoHubba and weighted gene co-expression network analysis (WGCNA) were utilized to select hub genes. Univariate and multivariate Cox regression analyses were used to screen out prognosis-associated genes. Furthermore, the Oncomine validation, prognostic analysis, methylation mechanism, gene set enrichment analysis (GSEA), TIMER database analysis and administration of candidate molecular drugs were conducted for hub genes. Nine hundred and fifty-seven DEGs were identified in the gene expression profile of GSE73168. After using Cytoscape plugin cytoHubba, 83 genes were verified. In co-expression network, the blue module was most closely related to tumor metastasis. Furthermore, the genes in Cytoscape were analyzed, showing that the blue module and screened 17 genes were closely associated with tumor metastasis. Univariate and multivariate Cox regression revealed that the age, stage and STMN2 were independent prognostic factors. The Cancer Genome Atlas (TCGA) suggested that the up-regulated expression of STMN2 was related to poor prognosis of ovarian cancer. Thus, STMN2 was considered as a new key gene after expression validation, survival analysis and TIMER database validation. GSEA confirmed that STMN2 was probably involved in ECM receptor interaction, focal adhesion, TGF beta signaling pathway and MAPK signaling pathway. Furthermore, three candidate small molecule drugs for tumor metastasis (diprophylline, valinomycin and anisomycin) were screened out. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot showed that STMN2 was highly expressed in ovarian cancer tissue and ovarian cancer cell lines. Further studies are needed to investigate these prognosis-associated genes for new therapy target.


2021 ◽  
Author(s):  
Angélica Rangel-López ◽  
Oscar Pérez-González ◽  
Sergio Juárez-Méndez ◽  
Ricardo López-Romero ◽  
Minerva Mata-Rocha ◽  
...  

Abstract End-stage renal disease (ESRD) patients have an elevated risk of cardiovascular (CV) complications including acute myocardial infarction (AMI); endothelial dysfunction and accumulation of uremic toxins have been associated with such CV-events. To explore which molecular pathways are involved in this CV-complication and the effects of the uremic serum on gene expression, an endothelial dysfunction model was studied through microarrays and pathway analysis. mRNA was isolated of human coronary arterial endothelial cells (HCAEC) primary cultures supplemented with 20% uremic serum from two groups of patients, USI: ESRD-patients; UCI: ESRD-AMI-patients. Affymetrix GeneChip® microarray and the LIMMA-package (Linear Models for Microarray Data) of the Bioconductor sofware17 was implemented to identify relevant DEGs between the two groups of uremic patients. Protein-protein interaction networks and pathway analysis were made to analyze the interaction and expression tendency of differentially expressed genes. 100 differentially expressed genes were identified from two data sets triggered by uremic state using bioinformatics, from 16,607. After in a new cohort, 30 genes were overexpressed in UCI group, which we identified 500 ontological genetic terms and one KEGG-pathway with p < 0.05. The metabolic pathway significantly represented was the MAPK signaling pathway. Network analysis showed six genes (PTGS2, SELE, ICAM1, HMOX1, EGR1, and TLR2) that represent potential markers for ESRD with AMI, as an approximation to their underlying mechanisms. The results obtained suggest that uremic toxins in patients with ESRD can alter HCAEC and modify the gene expression profile, which could have an impact on the development of cardiovascular complications in these patients.


Sign in / Sign up

Export Citation Format

Share Document