scholarly journals Dietary α-linolenic acid from flaxseed oil improved folliculogenesis and IVF performance in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish oil

Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 603-614 ◽  
Author(s):  
U Moallem ◽  
A Shafran ◽  
M Zachut ◽  
I Dekel ◽  
Y Portnick ◽  
...  

The objectives of this study were to determine the differential incorporation of various omega-3 (n-3) fatty acids (FAs) supplemented to dairy cows into ovarian compartments and assess the effects on IVF. Forty-two 256-day pregnant cows were supplemented with encapsulated fats, in treatments designated as i) SFA – saturated fat at 240 and 560 g/day per cow, prepartum and post partum (PP) respectively; ii) FLX – flaxseed oil at 300 and 700 g/day per cow prepartum and PP respectively; and iii) FO – fish oil at 300 and 700 g/day per cow prepartum and PP respectively. Commencing at 60 days in lactation, ovum pickup (OPU) was performed twice weekly (20 sessions; five cows per group) and in vitro maturation and IVF were conducted. The proportion of α-linolenic acid (ALA) was greater in follicular fluid (FF), granulosa cells, and cumulus–oocyte complexes (COCs) of FLX cows than in other groups (P<0.001). The proportion of docosahexaenoic acid (DHA) was 6.7 times as great in FF of FO as in other groups (P<0.001); docosapentaenoic acid n-3 and DHA were detected in COCs of FO but not in others. The follicle number during OPU was higher in FLX and FO than in SFA (P<0.05), and the oocyte cleavage rate was higher in FLX and FO than in SFA (P<0.01). Also, the percentage of oocytes that developed to blastocysts tended to be higher in both n-3 groups than in SFA (P<0.1). In conclusion, both dietary n-3 FAs similarly improved folliculogenesis and IVF performance; therefore, ALA-rich botanical n-3 seems to be a satisfactory approach to improve oocyte quality.

Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 485-495 ◽  
Author(s):  
J L M R Leroy ◽  
T Vanholder ◽  
B Mateusen ◽  
A Christophe ◽  
G Opsomer ◽  
...  

In this study concentration and composition of non-esterified fatty acids (NEFA) in follicular fluid (FF) of high-yielding dairy cows were determined during the period of negative energy balance (NEB) early post partum. NEFA were then added during in vitro maturation at concentrations measured previously in FF to evaluate their effect on the oocyte’s developmental competence. At 16 and 44 days post partum, FF of the dominant follicle and blood were collected from nine high-yielding dairy cows. Samples were analysed for NEFA concentration and composition. NEFA concentrations in FF (0.2–0.6 mmol/l) during NEB remained ± 40% lower compared with serum (0.4–1.2 mmol/l). The NEFA composition differed significantly between serum and FF with oleic acid (OA), palmitic acid (PA) and stearic acid (SA) being the predominant fatty acids in FF. Based on these results, 5115 oocytes were matured for 24 h in serum-free media with or without (negative control) the addition of 0.200 mmol/l OA, 0.133 mmol/l PA or 0.067 mmol/l SA dissolved in ethanol or ethanol alone (positive control). Matured oocytes were fertilized and cultured for 7 days in SOF medium. Addition of PA or SA during oocyte maturation had negative effects on maturation, fertilization and cleavage rate and blastocyst yield. More (late) apoptotic cumulus cells were observed in cumulus–oocyte complexes matured in the presence of SA or PA. Ethanol or OA had no effect. These in vitro results suggest that NEB may hamper fertility of high-yielding dairy cows through increased NEFA concentrations in FF affecting oocyte quality.


2001 ◽  
Vol 26 (1) ◽  
pp. 81-91 ◽  
Author(s):  
W.W. Thatcher ◽  
M. Binelli ◽  
D. Arnold ◽  
R. Mattos ◽  
L. Badinga ◽  
...  

AbstractA series of in vitro and in vivo experiments were conducted to characterise the dialogue between embryo and maternal units relative to the mechanisms controlling embryo survival in dairy cattle. Endometrial explants from pregnant cows had an attenuated PGF2α secretory response following treatment with melittin (stimulator of PLA2) and phorbol 12, 13 dibutyrate (PDBu). Thus previous exposure to the conceptus appears to regulate the endometrial synthetic pathway at a point coincident with or distal to PLA2 as well as inhibit PKC or PKC mediated events. Endometrial explants collected from cows receiving intrauterine infusions of rblFN-τ had a reduced secretory response following stimulation with PDBu indicating attenuation in PKC activity. Based upon tyrosine-phosphorylation of STAT-proteins and their translocation to the nucleus after treatment with rbIFN-τ, the JAK-STAT pathway is functional in immortalised bovine endometrial cells (BEND cells). Bend cells, exposed to rblFN-τ, reduced PDBu induction of PGF2α secretion and also decreased protein expression of Cox-2 and PLA. RblFN-τ clearly reduced PKC mediated events leading to an antiluteolytic response in endometrial cells. Feeding diets containing 2.6, 5.2 and 7.8% Menhaden fish meal to lactating dairy cows reduced uterine secretion of PGF2α following sequential injections of oestradiol and oxytocin. Thus antiluteolytic effects in early pregnancy may be amplified by feeding by-pass fats. Pregnancy rate to a timed insemination at first service post-partum is increased in association with injection of bST(500 mg; sc) given at insemination. Furthermore injection of bST at time of insemination in superovulated donor cows increased the number of blastocysts and reduced number of unfertilised embryos. Prospects of integrating novel strategies to improve embryo development and survival into reproductive management systems appear to be attainable in high producing dairy cows.


2001 ◽  
Vol 2001 ◽  
pp. 199-199 ◽  
Author(s):  
C. Rymer ◽  
C. Dyer ◽  
D.I. Givens ◽  
R. Allison

The dietary essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are predominantly found in fish oil, but fish consumption in the UK is low. Increasing the yield of EPA and DHA in cows’ milk would increase human intakes of EPA and DHA, and this can be achieved by including fish oil in cows’ diets. However, because EPA and DHA are susceptible to rumen biohydrogenation, their transfer efficiency into milk is low.In vitroobservations by Gulatiet al. (1999) suggested that if the concentration of fish oil in the rumen exceeded 1 mg/ml, EPA and DHA were not hydrogenated. The objectives of this study were therefore to determine the relationships between fish oil intake by dairy cows, and the probable concentrations of fish oil in the cows’ rumen, with the yield of EPA and DHA in their milk.


2006 ◽  
Vol 52 (12) ◽  
pp. 2265-2272 ◽  
Author(s):  
Jing Cao ◽  
Kerry A Schwichtenberg ◽  
Naomi Q Hanson ◽  
Michael Y Tsai

Abstract Background: The sum of eicosapentaenoic acid (EPA, 20:5 ω3) and docosahexaenoic acid (DHA, 22:6 ω3) in erythrocyte membranes, termed the omega-3 index, can indicate suboptimal intake of omega-3 fatty acids, a risk factor for cardiovascular disease (CVD). To study the effects of fatty acid supplementation, we investigated the rate of incorporation and clearance of these fatty acids in erythrocyte membranes and plasma after intake of supplements. Methods: Twenty study participants received supplementation with either fish oil (1296 mg EPA + 864 mg DHA/day) or flaxseed oil (3510 mg alpha-linolenic acid + 900 mg linoleic acid/day) for 8 weeks. We obtained erythrocyte membrane and plasma samples at weeks 0, 4, 8, 10, 12, 14, 16, and 24 and extracted and analyzed fatty acids by gas chromatography. Results: After 8 weeks of fish oil supplementation, erythrocyte membrane EPA and DHA increased 300% (P &lt;0.001) and 42% (P &lt;0.001), respectively. The mean erythrocyte omega-3 index reached a near optimal value of 7.8%, and remained relatively high until week 12. EPA and DHA showed greater increases and more rapid washout period decreases in plasma phospholipids than in erythrocyte membranes. Flaxseed oil supplementation increased erythrocyte membrane EPA to 133% (P &lt;0.05) and docosapentaenoic acid (DPA, 22:5 ω3) to 120% (P &lt;0.01) of baseline, but DHA was unchanged. In plasma phospholipids, EPA, DPA, and DHA showed a slight but statistically insignificant increase. Conclusions: Erythrocyte membrane EPA+DHA increases during relatively short intervals in response to supplementation at rates related to amount of supplementation. These results may be useful to establish appropriate dosage for omega-3 fatty acid supplementation.


2013 ◽  
Vol 80 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Vishal Suthar ◽  
Onno Burfeind ◽  
Britta Maeder ◽  
Wolfgang Heuwieser

The overall objective of this study was to evaluate agreement between rectal (RT) and vaginal temperature (VT) measured with the same temperature loggers in dairy cows. Three experiments were conducted. The study began with a validation in vitro of 24 temperature loggers comparing them to a calibrated liquid-in-glass thermometer as a reference method. The association and agreement between the 24 temperature loggers with the reference method was r=0·996 (P<0·001) with a negligible coefficient of variance (0·005) between the loggers. In-vivo temperature loggers were tested in 11 healthy post-partum cows (Experiment 2) and 12 early post-partum cows with greater body temperature (Experiment 3). Temperature loggers were set to record VT and RT at 1-min intervals. To prevent rectal and vaginal straining and potential expulsion of temperature logger an epidural injection of 2·5 ml of 2% Procain was administered. Association between RT and VT was r=0·92 (P<0·001; Experiment 2) and r=0·94 (P<0·001; Experiment 3) with a negligible difference of −0·1 and 0·01 °C. Bland-Altman plots demonstrated agreement between RT and VT for healthy and early post-partum cows with greater body temperature in Experiments 2 and 3, respectively. Furthermore the intra-class correlation coefficient between RT and VT measured with identical loggers within cows of Experiments 2 and 3 also demonstrated greater agreements (P<0·001). Therefore, continuous VT monitoring with temperature loggers can be used as a measure of body temperature in dairy cows.


2010 ◽  
Vol 105 (7) ◽  
pp. 1026-1035 ◽  
Author(s):  
Leslie Couëdelo ◽  
Carole Boué-Vaysse ◽  
Laurence Fonseca ◽  
Emeline Montesinos ◽  
Sandrine Djoukitch ◽  
...  

The bioavailability of α-linolenic acid (ALA) from flaxseed oil in an emulsified formv.a non-emulsified form was investigated by using two complementary approaches: the first one dealt with the characterisation of the flaxseed oil emulsion inin vitrogastrointestinal-like conditions; the second one compared the intestinal absorption of ALA in rats fed the two forms of the oil. Thein vitrostudy on emulsified flaxseed oil showed that decreasing the pH from 7·3 to 1·5 at the physiological temperature (37°C) induced instantaneous oil globule coalescence. Some phase separation was observed under acidic conditions that vanished after further neutralisation. The lecithin used to stabilise the emulsions inhibited TAG hydrolysis by pancreatic lipase. In contrast, lipid solubilisation by bile salts (after lipase and phospholipase hydrolysis) was favoured by preliminary oil emulsification. Thein vivoabsorption of ALA in thoracic lymph duct-cannulated rats fed flaxseed oil, emulsified or non-emulsified, was quantified. Oil emulsification significantly favoured the rate and extent of ALA recovery as measured by the maximum ALA concentration in the lymph (Cmax = 14 mg/ml at 3 h in the emulsion groupv.9 mg/ml at 5 h in the oil group;P < 0·05). Likewise, the area under the curve of the kinetics was significantly higher in the emulsion group (48 mg × h/ml for rats fed emulsionv.26 mg × h/ml for rats fed oil;P < 0·05). On the whole, ALA bioavailability was improved with flaxseed oil ingested in an emulsified state. Data obtained from thein vitrostudies helped to partly interpret the physiological results.


Author(s):  
Jaya Sriram ◽  
Olorunfemi Adetona ◽  
Tonya Orchard ◽  
Chieh-Ming Wu ◽  
James Odei

Airborne particulate matter (PM) exposure remains the leading environmental risk factor for disease globally. Interventions to mitigate the adverse effects of PM are required, since there is no discernible threshold for its effects, and exposure reduction approaches are limited. The mitigation of PM (specifically diesel exhaust particles (DEP))-induced release of pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) and vasoconstrictor endothelin-1 (ET-1) after 24 and 48 h of exposure by pre-treatment with individual pure, combined pure, and an oil formulation of two fish oil omega-3 polyunsaturated fatty acids (ω-3 PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) were all tested at an equivalent concentration of 100 µM in vitro in human umbilical vein endothelial cells. The PUFAs and fish oil formulation completely mitigated or diminished the DEP-induced release of IL-6, IL-8, and ET-1 by 14–78%. DHA was more effective in reducing the levels of the DEP-induced release of the cytokines, especially IL-6 after 48 h of DEP exposure in comparison to EPA (p < 0.05), whereas EPA seemed to be more potent in reducing ET-1 levels. The potential of fish ω-3 PUFAs to mitigate PM-induced inflammation and vasoactivity was demonstrated by this study.


Sign in / Sign up

Export Citation Format

Share Document